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• Thomson scattering from the particle noise – form factor, 
1960, for stable, collisionless plasma not necessary in 
thermal equilibrium.
• Form factor with particle collisions from nonlocal and 
nonstationary hydrodynamics
• Enhanced fluctuation levels – thermal response to 
incoherent laser pulses
• Non-Maxwellian distribution functions – super Gaussians
in laser heated plasmas, modified by thermal transport.
• Electromagnetic, Weibel unstable plasmas – laboratory 
astrophysics, measurement of the magnetic fields
• Langmuir and ion acoustic turbulence – enhanced 
fluctuation spectra, absorption, modified transport
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Thomson scattering (TS) cross section is proportional to the dynamical form factor ! ", $ .
For stable plasmas (but not necessary in equilibrium) particle discretness gives rise to electron
(small amplitude) density fluctuations and their correlation function, as follows (J. Feyer, Can.
J. Phys. (1960); J. Renau, J. Geophys. Res. (1960); J. Daugherty, D. Farley, Proc. Roy. Soc. 
(1960); E. Salpeter, Phys. Rev. (1960).
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where linear response functions evaluated using distribution functions 2(3, 263, are
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density and the width of the observed peaks is a measure of
the electron temperature. Plasma flow velocities in the range
of 1.8! 108 cm/s to 4.0! 107 cm/s are measured from the
ion feature’s [Fig. 2(b)] Doppler shift relative to the incident
probe wavelength. The ion feature is also used to measure-
ment the ion temperature. Both carbon and hydrogen are
assumed to be fully ionized for all target configurations, due
to the measured electron temperature.

The experimental data from Figure 2 at 5.5 ns are com-
pared to the Thomson scattering cross section (using Eq. (4))
in Figures 3 and 4. Combined electron and ion feature fitting
results provide the plasma state parameters of v, n e; Te, and
Ti. We estimate the errors on these parameters by studying
the sensitivity to the fits: 610% in v, 615% in n e; 615% in
Te, and 620% in Ti.

Figure 5 shows the Thomson scattering data from the
double foil target configuration. The electron feature from
the double foil configuration is shown in Figure 5(a). Again,
the width of the electron feature is a measure of the electron
temperature which is clearly higher than the temperature in
the single foil configuration. The electron density has also
increased relative to the single foil configuration as expected.
The spectral shift of the ion feature [Fig. 5(a)] is very similar
to that of the single foil configuration early in time, but after
5 ns, a smaller spectral shift is observed in the double foil

data compared to the single flow data. This is a result of a
decreasing plasma flow velocity for the counter-streaming
flows configuration late in time. The observed ion feature
spectra are also significantly broader than those of the single
foil data. The increased width of the ion feature is a function
of increasing ion temperature. The red-shifted feature is also
visible in the double foil late in time. Early in time, the spec-
tral field of view prevents the measurement of both blue-
shifted and red-shifted ion features simultaneously in the
double foil configuration.

The double foil Thomson scattering measurements are
compared to the Thomson scattering cross section in Figures 6
and 7 to determine plasma conditions and estimate the error in
the measurements. Similar errors to the single foil data are
found for the double foil data: 610% in v, 615% n e; 615%
in 15% in Te, and 620% in Ti.

Thomson scattering measurements are also made with
a k-vector parallel to the target surface, orthogonal to the
k-vector used in the configurations shown in Figures 2 and 5.
A composite image of the ion feature for this parallel
k-vector is shown in Figure 8(a). The ion feature is nearly
centered around the incident probe wavelength of 527 nm,

FIG. 2. A composite image is shown of the electron feature (a) and the ion
feature (b) for the single foil configuration. A heavy dashed line in (b) is
shown at the wavelength of the Thomson scattering probe beam. Thin
dashed lines are shown to guide the eye.

FIG. 3. The Thomson scattering cross section is fit to the measured Thomson
scattering electron feature at 5.5 ns to determine the electron temperature and
density from a single foil experiment. The best fit to the experimental data
(red line) is calculated using an electron temperature of 100 eV and an elec-
tron density of 5:6! 1018cm"3. (a) The electron temperature is increased to
125 eV (green line) and decreased to 75 eV (blue line) to demonstrate the sen-
sitivity of the fit. (b) The electron density is varied from 6:6! 1018cm"3

(green line) to 4:6! 1018cm"3 (blue line) as well. A stray light block is used
and heavily filters wavelengths between 520–537 nm.

FIG. 4. The Thomson scattering cross section is fit to the measured Thom-
son scattering ion feature at 5.5 ns to determine the ion temperature and
plasma flow velocity. The best fit to the experimental data (red line) is calcu-
lated using an electron temperature and density determined from the electron
feature (100 eV and 5:6! 1018cm"3), ion temperature of 40 eV, and a
plasma flow velocity of 8:65! 107cm=s. (a) The ion temperature is
increased to 60 eV (green line) and decreased to 20 eV (blue line) to demon-
strate the sensitivity of the fit. (b) The plasma flow velocity is varied from
8:9! 107cm=s (green line) to 8:4! 107cm=s (blue line) as well.
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We present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are
described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the
Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic
form factor, S(k⃗,ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic,
Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire
range of plasma collisionality. The collisionless limit of S(k⃗,ω) and the strong-collision result based on the
fluctuation-dissipation theorem and classical transport at Te = Ti are recovered and discussed. Results of several
Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means
of our theory for S(k⃗,ω).
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I. INTRODUCTION

The theory of fluctuations produced by particle discreteness
in stable plasmas plays an important role in the statistical
description of plasmas [1,2]. These fluctuations are responsible
for particle diffusion and transport. Thomson scattering (TS)
of electromagnetic radiation from electron-density fluctuations
has proven to be a powerful diagnostic in determining plasma
parameters and basic plasma processes. Because of the
progress that has been achieved in TS experiments in recent
years [3,4], the theory of fluctuations remains an active field
of research. This article will be concerned with the theory
of fluctuations and is motivated by the TS measurements in
weakly coupled collisional nonequilibrium plasmas at differ-
ent electron and ion temperatures, Te ̸= Ti . Frequent particle
collisions and unequal temperatures characterize dense laser-
produced plasmas and high-energy density systems. With the
motivation of explaining ionospheric experiments the general
form of the Thomson scattered spectrum of a collisionless
plasma were determined independently in 1960 by Feyer
[5], Renau [6], Daugherty and Farley [7], and Salpeter [8].
These fluctuations caused by particle discreteness have been
described by the linearized Vlasov equation, and therefore
these theories do not include effects of particle collisions
but they work for nonequilibrium plasmas, for example, with
Te ̸= Ti . Vlasov theory for the dynamical correlation function
of density fluctuations will be recovered from our result in the
limit of vanishing collisions and for Maxwellian electron and
ion particle distribution functions.

The dynamical evolution of the correlation functions of
fluctuations is described by the linearized kinetic equations
for the one particle distribution function with initial con-
ditions corresponding to static correlations [9,10]. Equiva-
lently, following Onsager’s hypothesis [11], fluctuations of
dynamical quantities evolve in accordance with the same
model equations as those governing macroscopic processes.
Thus, the fluctuations on a hydrodynamical scale in thermal
equilibrium relax due to collisions according to the equations
of linearized hydrodynamics [12,13]. In plasmas the relevant

hydrodynamical theories are transport models of Spitzer-
Härm [14] and Braginskii [15], which are used to derive
collision-dominated fluctuation spectrum. This result will
be recovered from our theory in the opposite to Vlasov,
strongly collisional limit. The macroscopic model in our
theory is the system of linearized equations of nonlocal and
nonstationary hydrodynamics that works everywhere from
the collisionless Vlasov limit to the strongly collisional limit
of hydrodynamical fluctuations. These equations have been
derived in the process of finding rigorous solutions to the
linearized Vlasov-Landau kinetic equation in the entire regime
of plasma collisionality for all frequencies and wave numbers
[16– 18]. These results are used here in derivation of the
correlation functions of density fluctuations. The nonlocal
hydrodynamics is formulated in the Fourier space and it is
well suited for the problem of finding spectral densities of
the correlation functions of fluctuations. In particular, we are
interested in finding the electron density correlation function,
which is used in the calculation of the TS cross-section.

The nonlocal hydrodynamics has been introduced in our
paper because it describes evolution of the fluctuations, and it
is used in finding solution to the linearized Vlasov-Landau
kinetic equation. One can derive linear plasma response
using nonlocal hydrodynamic equations and plasma dispersion
function in terms of the nonlocal and nonstationary transport
coefficients [17,18]. This method of the solution of the kinetic
equation follows the pioneering work by A.R. Bell [19]. He
introduced nonlocal thermal conductivity for the first time
by considering small amplitude perturbations associated with
linear ion acoustic waves. Subsequently, the full set of linear
electrostatic modes [17,18,20], including the entropy mode,
and the complete linear plasma response in the entire regime
of particle collisions have been found. Dispersion and damping
of electrostatic modes describe long-time plasma evolution and
define resonances of the dynamical form factor discussed in
our paper.

We proceed with the solution of the linearized kinetic
equations for the one-particle distribution functions. This

2470-0045/2017/96(4)/043207(15) 043207-1 ©2017 American Physical Society
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FIG. 1. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 2 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 µm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

field perturbation acting on electrons. Braginskii’s equations
[15] that are used to evaluate σe were simplified and only
three dominant transport processes were retained described
by the electron thermal conductivity κe0 = 3.14nev

2
T e/νei , the

ion thermal conductivity κi0 = 3.91niv
2
T i/νii , and the ion

viscosity ηi0 = 0.96niTi/νii . All three transport coefficients
represent stationary (ω → 0) and local (k → 0) limits of
the transport coefficients that were introduced in transport
relations Eqs. (18) and (20) of our theory for plasmas with
Z = 1 according to the experimental conditions in Ref. [34].
With these approximations, the dynamical form factor Eq. (53)
has the following form [34]:

S(k,ω) = 2
A(k) + B(k)b(k)/D(k,ω)

[A(k) + B(k)b(k)/D(k,ω)]2ω2 + H (k,ω)2
,

H (k,ω) = 2 − ω2/ω2
0i + 1.5B(k)ω2/D(k,ω),

B(k) = 1 + 3(me/mi)neνei/(k2κe0),

A(k) = ne/(k2κe0) + (4/3)ηi0/(neT ),

D(k,ω) = (3ω/2)2 + b(k)2, ω0i = k(T/mi)1/2,

b(k) = k2κi0/ne + 3(me/mi)νei . (54)

Comparison between results for the dynamic form factor based
on Eq. (54) and our theory Eq. (51) is shown in Fig. 1.
At the typical plasma parameters from Ref. [34] used in
Fig. 1 we find that the collisional parameter for electrons
is kλei = 0.08 and for ions kλii = 0.11. The TS parameter
α = 1/(kλDe) = 489.7. While for these parameters electrons
can be described by the Braginskii transport theory, i.e.,
nonlocal effects are small, the ion response will nevertheless
be affected by nonlocal effects. In particular, the ion thermal
conductivity is reduced from the κi0 and this lowers the
damping of the entropy mode as it is seen in Fig. 4 of Ref. [18],
cf. also Ref. [20]. This explains the discrepancy between two
curves in Fig. 1 at the zero-frequency entropy mode.

This trend continues for plasma parameters corresponding
to less collisional plasmas. Figure 2 shows the results for in-

λ1 -λ0  [Å] 

ωpeS(k,ω) 

FIG. 2. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 5 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 µm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

creased temperature of Te = Ti = 5 eV (the rest of parameters
are as in Fig. 1). In hotter plasmas, collisional parameters are
kλei = 0.38 and for ions kλii = 0.54 and the TS parameter is
α = 1/(kλDe) = 309.7.

Now, the strong collision theory Eq. (54) is not only
incorrect for the entropy mode but electron transport is also
in the nonlocal regime causing changes in the frequency
and damping of the ion-acoustic fluctuations. Again, results
in Fig. 2 reflect changes to the dispersion relations of the
ion-acoustic waves and entropy modes in the regime of weaker
collisions discussed in Ref. [18].

B. Low-frequency fluctuations

TS in the collective regime (α = (kλDe)−1 > 1) and in
the low frequency range (ω ! ωpi) is used to investigate
ion-acoustic and entropy mode fluctuations. For α ≫ 1 the
dynamic form factor S(k⃗,ω) characterizes long wavelength
fluctuations in the hydrodynamical regime as discussed in the
previous section. However, for the typical conditions in laser-
produced plasmas, S(k⃗,ω) will be in the weakly collisional
regime where damping and dispersion of the modes depend
on the nonlocal and nonstationary properties of transport
relations. To illustrate these features of the S(k⃗,ω) theory,
we will first address a typical regime encountered in carbon
plasmas that is characteristic of laser produced plasmas at
modest intensities. In fact, we will discuss results relevant to
measurements in Ref. [27] (cf. Fig. 4 therein). Consider the
TS probe at λ0 = 5270 Å, a scattering angle of θ = 117◦, with
Te = 100 eV, ne = 5.6 1018 cm−3, and α = 1.58 in carbon
plasmas. At these conditions kλei = 133 and therefore electron
collisions have no effect on the TS cross-section. On the other
hand, for the three ion temperatures examined in Ref. [27]
ion-ion collisions play a role and their effects are illustrated in
Fig. 3.

Figure 3 displays three panels (a), (b), and (c) that
show redshifted ion-acoustic peaks calculated for the above
plasma parameters and for different ion temperatures using
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The rapid evolutions of the electron density and temperature in a laser-produced plasma were measured
using collective Thomson scattering. Unprecedented picosecond time resolution, enabled by a pulse-front-
tilt compensated spectrometer, revealed a transition in the plasma-wave dynamics from an initially cold,
collisional state to a quasistationary, collisionless state. The Thomson-scattering spectra were compared
with theoretical calculations of the fluctuation spectrum using either a conventional Bhatnagar-Gross-
Krook (BGK) collision operator or the rigorous Landau collision terms: the BGK model overestimates the
electron temperature by 50% in the most-collisional conditions.
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Endeavors to engineer plasmas for a number of applica-
tions rely critically on plasma conditions. Optimizing
plasma devices, including laser amplifiers [1–3], laser
compressors [4], wave plates [5,6], polarizers [7,8],Q plates
[9], particle accelerators [10,11], photon accelerators [12],
high-order frequency conversion [13,14], and photon-elec-
tron light sources [15,16], requires an accurate knowledge of
plasma density and temperature dynamics. In these systems,
the electromagnetic fields generate dynamic plasma con-
ditions that typically evolve over the initial 50 ps. During the
rise of a high-intensity laser pulse, the photoionized elec-
trons are liberated with minimal kinetic energy, resulting in
an initially cold plasma. The energy supplied to the electrons
by the electromagnetic field through inverse bremsstrahlung
causes the temperature to rise rapidly until the collisionality
of the plasma reduces the heating rate to a level comparable
to the cooling mechanisms. Measurements of these early
plasma dynamics on application-relevant timescales have
been previously unattainable.
Optical Thomson scattering (TS) is a powerful diag-

nostic that can accurately measure plasma conditions
[17–23], but it has had limited temporal resolution
(>50 ps) [24]. Experiments have used ultrashort (<1 ps)
TS probe beams [20,25] to improve the temporal resolu-
tion, but these studies were limited to conditions where the
width of the scattered features were large as compared to
the bandwidth associated with time integrating the scattered
light from an ultrashort probe beam. Furthermore, during
plasma formation, the collisional damping dominates over
the Landau damping of electron plasma waves (EPWs) and
a collisional theory is required to accurately model the
TS spectrum. Thomson-scattering measurements of colli-
sional EPWs have been limited to nonideal plasmas,
Λ ¼ 4 × 108T3=2

e ðeVÞ=n1=2e ðcm3Þ≲ 1, where there are

few particles in the Debye sphere and the short-range
Coulombic interaction between charges determines the
dynamics, as opposed to the collective behavior [26–29].
In these nonideal plasmas, theories have been developed to
interpret the TS spectrum [30,31]. The standard computa-
tionally efficient approach to include collisions is to use the
approximate Bhatnagar-Gross-Krook (BGK) collision
operator [32,33]; but, recently, the more-accurate linearized
Vlasov-Fokker-Planck (VFP) equation was presented to
account for collisions in TS calculations [34].
In this Letter, we report the first observation of the effects

of collisions on electron plasma waves in the transition to
an ideal plasma. The measurements were obtained by an
ultrafast high-throughput spectrometer that provided
unprecedented temporal resolution of the EPW TS spectra.
These spectra provided a measurement of collisional EPWs
that were modeled to extract the picosecond evolution of
the electron temperature and density. The standard treat-
ment of an ideal plasma is to assume that Landau damping
is the only active damping mechanism; however, the
measurements of the initial plasma demonstrated that the
EPW damping was dominated by collisions. The hydrogen
gas was ionized at an intensity near 1014 W=cm2, where the
initial electron plasma temperature and density were
measured to be 3 eV and 8.40 × 1018 cm3, respectively.
Over the first 18 ps, the plasma temperature increased
modestly (16 eV) as the plasma density became fully
ionized (1.07 × 1019 cm3) and then rapidly increased to a
saturated level of 93 eV over the next 20 ps. During this
evolution, the plasma transitioned from a nonideal (Λ ∼ 1)
to an ideal (Λ ∼ 110) plasma. For temperatures below
45 eV, a collisional model was required to reproduce the
measured spectrum. For the most-collisional conditions,
the VFP scattering model shows that the BGK model
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plasma devices, including laser amplifiers [1–3], laser
compressors [4], wave plates [5,6], polarizers [7,8],Q plates
[9], particle accelerators [10,11], photon accelerators [12],
high-order frequency conversion [13,14], and photon-elec-
tron light sources [15,16], requires an accurate knowledge of
plasma density and temperature dynamics. In these systems,
the electromagnetic fields generate dynamic plasma con-
ditions that typically evolve over the initial 50 ps. During the
rise of a high-intensity laser pulse, the photoionized elec-
trons are liberated with minimal kinetic energy, resulting in
an initially cold plasma. The energy supplied to the electrons
by the electromagnetic field through inverse bremsstrahlung
causes the temperature to rise rapidly until the collisionality
of the plasma reduces the heating rate to a level comparable
to the cooling mechanisms. Measurements of these early
plasma dynamics on application-relevant timescales have
been previously unattainable.
Optical Thomson scattering (TS) is a powerful diag-

nostic that can accurately measure plasma conditions
[17–23], but it has had limited temporal resolution
(>50 ps) [24]. Experiments have used ultrashort (<1 ps)
TS probe beams [20,25] to improve the temporal resolu-
tion, but these studies were limited to conditions where the
width of the scattered features were large as compared to
the bandwidth associated with time integrating the scattered
light from an ultrashort probe beam. Furthermore, during
plasma formation, the collisional damping dominates over
the Landau damping of electron plasma waves (EPWs) and
a collisional theory is required to accurately model the
TS spectrum. Thomson-scattering measurements of colli-
sional EPWs have been limited to nonideal plasmas,
Λ ¼ 4 × 108T3=2

e ðeVÞ=n1=2e ðcm3Þ≲ 1, where there are

few particles in the Debye sphere and the short-range
Coulombic interaction between charges determines the
dynamics, as opposed to the collective behavior [26–29].
In these nonideal plasmas, theories have been developed to
interpret the TS spectrum [30,31]. The standard computa-
tionally efficient approach to include collisions is to use the
approximate Bhatnagar-Gross-Krook (BGK) collision
operator [32,33]; but, recently, the more-accurate linearized
Vlasov-Fokker-Planck (VFP) equation was presented to
account for collisions in TS calculations [34].
In this Letter, we report the first observation of the effects

of collisions on electron plasma waves in the transition to
an ideal plasma. The measurements were obtained by an
ultrafast high-throughput spectrometer that provided
unprecedented temporal resolution of the EPW TS spectra.
These spectra provided a measurement of collisional EPWs
that were modeled to extract the picosecond evolution of
the electron temperature and density. The standard treat-
ment of an ideal plasma is to assume that Landau damping
is the only active damping mechanism; however, the
measurements of the initial plasma demonstrated that the
EPW damping was dominated by collisions. The hydrogen
gas was ionized at an intensity near 1014 W=cm2, where the
initial electron plasma temperature and density were
measured to be 3 eV and 8.40 × 1018 cm3, respectively.
Over the first 18 ps, the plasma temperature increased
modestly (16 eV) as the plasma density became fully
ionized (1.07 × 1019 cm3) and then rapidly increased to a
saturated level of 93 eV over the next 20 ps. During this
evolution, the plasma transitioned from a nonideal (Λ ∼ 1)
to an ideal (Λ ∼ 110) plasma. For temperatures below
45 eV, a collisional model was required to reproduce the
measured spectrum. For the most-collisional conditions,
the VFP scattering model shows that the BGK model
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compressors [4], wave plates [5,6], polarizers [7,8],Q plates
[9], particle accelerators [10,11], photon accelerators [12],
high-order frequency conversion [13,14], and photon-elec-
tron light sources [15,16], requires an accurate knowledge of
plasma density and temperature dynamics. In these systems,
the electromagnetic fields generate dynamic plasma con-
ditions that typically evolve over the initial 50 ps. During the
rise of a high-intensity laser pulse, the photoionized elec-
trons are liberated with minimal kinetic energy, resulting in
an initially cold plasma. The energy supplied to the electrons
by the electromagnetic field through inverse bremsstrahlung
causes the temperature to rise rapidly until the collisionality
of the plasma reduces the heating rate to a level comparable
to the cooling mechanisms. Measurements of these early
plasma dynamics on application-relevant timescales have
been previously unattainable.
Optical Thomson scattering (TS) is a powerful diag-

nostic that can accurately measure plasma conditions
[17–23], but it has had limited temporal resolution
(>50 ps) [24]. Experiments have used ultrashort (<1 ps)
TS probe beams [20,25] to improve the temporal resolu-
tion, but these studies were limited to conditions where the
width of the scattered features were large as compared to
the bandwidth associated with time integrating the scattered
light from an ultrashort probe beam. Furthermore, during
plasma formation, the collisional damping dominates over
the Landau damping of electron plasma waves (EPWs) and
a collisional theory is required to accurately model the
TS spectrum. Thomson-scattering measurements of colli-
sional EPWs have been limited to nonideal plasmas,
Λ ¼ 4 × 108T3=2

e ðeVÞ=n1=2e ðcm3Þ≲ 1, where there are

few particles in the Debye sphere and the short-range
Coulombic interaction between charges determines the
dynamics, as opposed to the collective behavior [26–29].
In these nonideal plasmas, theories have been developed to
interpret the TS spectrum [30,31]. The standard computa-
tionally efficient approach to include collisions is to use the
approximate Bhatnagar-Gross-Krook (BGK) collision
operator [32,33]; but, recently, the more-accurate linearized
Vlasov-Fokker-Planck (VFP) equation was presented to
account for collisions in TS calculations [34].
In this Letter, we report the first observation of the effects

of collisions on electron plasma waves in the transition to
an ideal plasma. The measurements were obtained by an
ultrafast high-throughput spectrometer that provided
unprecedented temporal resolution of the EPW TS spectra.
These spectra provided a measurement of collisional EPWs
that were modeled to extract the picosecond evolution of
the electron temperature and density. The standard treat-
ment of an ideal plasma is to assume that Landau damping
is the only active damping mechanism; however, the
measurements of the initial plasma demonstrated that the
EPW damping was dominated by collisions. The hydrogen
gas was ionized at an intensity near 1014 W=cm2, where the
initial electron plasma temperature and density were
measured to be 3 eV and 8.40 × 1018 cm3, respectively.
Over the first 18 ps, the plasma temperature increased
modestly (16 eV) as the plasma density became fully
ionized (1.07 × 1019 cm3) and then rapidly increased to a
saturated level of 93 eV over the next 20 ps. During this
evolution, the plasma transitioned from a nonideal (Λ ∼ 1)
to an ideal (Λ ∼ 110) plasma. For temperatures below
45 eV, a collisional model was required to reproduce the
measured spectrum. For the most-collisional conditions,
the VFP scattering model shows that the BGK model
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spectrum that was essentially a delta function, and the
experimental width was dominated by the temporal evo-
lution in density and the instrument response function,
which were narrower than the measurements. The TS
spectra calculated with the BGK collisional model repro-
duced the measured scattering spectrum at all times; but, in
the most-collisional conditions, it overestimated the elec-
tron temperature by ∼50% [Fig. 3]. Detailed studies [33]
that have compared the BGK model to more complete
theories based on the VFP kinetic equations have con-
cluded that neglecting the electron-electron collisions and
the crude approximation to the Coulomb collision operator
in the BGK model leads to significant differences in the
plasma response at Langmuir fluctuation frequencies
[39,40]. This leads to inaccurate calculations of the temper-
ature when using the BGK model.
The TS spectrum calculated with the BGKmodel [34,38]

used Eq. (1), where gBGKðk;ωÞ ¼ −k2λ2D and the plasma
dielectric function follows from the BGK model [32,33]:

ϵBGKðk;ωÞ ¼ 1þ 4πe2

m ek2

Z
d3v

1

ωþ iνeiðvÞ − k · v
k ·

∂Fe

∂v :

ð2Þ

Here, the electron-ion collision frequency is given
by νei ¼ 4πZe4neΛei=m 2

ev3, Fe ¼ neðm e=2πTeÞ3=2 exp
ð−m ev2=2TeÞ is the electron’s Maxwellian velocity dis-
tribution, v is electron velocity, m e is the electron mass, e is
the electron charge, and ne and Te are the electron density
and temperature, respectively. The BGK model is often
simplified by using the thermal velocity in the collisional
term νei, but to improve its accuracy in these calculations,
the velocity dependence was retained [38]. The standard
collisionless results for the TS spectrum [Eq. (1)] are
recovered in the limit of νei ¼ 0 [38].

Figure 5 shows the spectral width of the EPW features,
which is proportional to the EPW damping, for the
collisionless, BGK, and VFP models. At a density of
1019 cm3, a damping minimum is obtained at 35 eV for
both the VFP and BGK models. This minimum in damping
is a result of the competition between the collisional
damping that dominates at low temperatures and the
collisionless (Landau) damping that dominates at high
temperatures. The collisionless model works well for
temperatures above>35 eV. Collisional damping is impor-
tant in calculating the width at temperatures below
∼35 eV. This is consistent with the measurements,
which indicated that a collisional theory was required to
accurately interpret the spectra at these temperatures.
Figure 5(b) compares the spectra calculated using the
BGK and the VFP models, but without measurement
effects. The BGK model is a good approximation for
determining the resonant frequency, but it overestimates the
width of the spectrum when collisions are important
(Te ≲ 35 eV). This results in an overestimate of the
electron temperature. The deviations from the VFP model
reveal when improved theoretical interpretations of TS
experiments are required.
In summary, limiting the pulse-front tilt in a spectrometer

has allowed an ultrafast TS diagnostic to measure the
plasma creation and picosecond evolution of the electron
temperature and density in a laser-produced plasma. The
measurements were compared with spectra calculated
using the standard BGK model to account for collisions
and show that the BGK model overestimates the spectral
width of the EPW features, leading to an overestimate of
the electron temperature by up to ∼50% at the most-
collisional conditions. This overestimation of collisions
by the BGK model has implications that extend well
beyond TS because this collisional model is often used
in plasma physics, including modeling of thermal transport.

(a) (b)

FIG. 5. (a) The width (FWHM) of the redshifted EPW features
is plotted for a density of 1019 cm3 using the collisionless (red
diamonds), BGK (blue squares), and VFP (green triangles)
models as functions of electron temperature. (b) The spectrum
calculated with the BGK model (blue dashed line) and the VFP
model (green dashed line) are shown for Te ¼ 11 eV and
ne ¼ 1.07× 1019 cm3. To illustrated the width differences, the
BGK spectrum was multiplied by 1.8.

FIG. 4. The measure spectrum (red circles) at 16 ps is compared
to calculations that use a collisionless model (black solid curve:
Te ¼ 10 eV and ne ¼ 1.0 × 1019 cm3), a VFP model (purple
dashed curve: Te ¼ 5 eV and ne ¼ 1.0 × 1019 cm3), and a BGK
model (blue curve: Te ¼ 10 eV and ne ¼ 1.0 × 1019 cm3). The
spectra were calculated with the plasma conditions over the
surrounding 2 ps and convolved with the IRF (black dashed
curve).
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Endeavors to engineer plasmas for a number of applica-
tions rely critically on plasma conditions. Optimizing
plasma devices, including laser amplifiers [1–3], laser
compressors [4], wave plates [5,6], polarizers [7,8],Q plates
[9], particle accelerators [10,11], photon accelerators [12],
high-order frequency conversion [13,14], and photon-elec-
tron light sources [15,16], requires an accurate knowledge of
plasma density and temperature dynamics. In these systems,
the electromagnetic fields generate dynamic plasma con-
ditions that typically evolve over the initial 50 ps. During the
rise of a high-intensity laser pulse, the photoionized elec-
trons are liberated with minimal kinetic energy, resulting in
an initially cold plasma. The energy supplied to the electrons
by the electromagnetic field through inverse bremsstrahlung
causes the temperature to rise rapidly until the collisionality
of the plasma reduces the heating rate to a level comparable
to the cooling mechanisms. Measurements of these early
plasma dynamics on application-relevant timescales have
been previously unattainable.
Optical Thomson scattering (TS) is a powerful diag-

nostic that can accurately measure plasma conditions
[17–23], but it has had limited temporal resolution
(>50 ps) [24]. Experiments have used ultrashort (<1 ps)
TS probe beams [20,25] to improve the temporal resolu-
tion, but these studies were limited to conditions where the
width of the scattered features were large as compared to
the bandwidth associated with time integrating the scattered
light from an ultrashort probe beam. Furthermore, during
plasma formation, the collisional damping dominates over
the Landau damping of electron plasma waves (EPWs) and
a collisional theory is required to accurately model the
TS spectrum. Thomson-scattering measurements of colli-
sional EPWs have been limited to nonideal plasmas,
Λ ¼ 4 × 108T3=2

e ðeVÞ=n1=2e ðcm3Þ≲ 1, where there are

few particles in the Debye sphere and the short-range
Coulombic interaction between charges determines the
dynamics, as opposed to the collective behavior [26–29].
In these nonideal plasmas, theories have been developed to
interpret the TS spectrum [30,31]. The standard computa-
tionally efficient approach to include collisions is to use the
approximate Bhatnagar-Gross-Krook (BGK) collision
operator [32,33]; but, recently, the more-accurate linearized
Vlasov-Fokker-Planck (VFP) equation was presented to
account for collisions in TS calculations [34].
In this Letter, we report the first observation of the effects

of collisions on electron plasma waves in the transition to
an ideal plasma. The measurements were obtained by an
ultrafast high-throughput spectrometer that provided
unprecedented temporal resolution of the EPW TS spectra.
These spectra provided a measurement of collisional EPWs
that were modeled to extract the picosecond evolution of
the electron temperature and density. The standard treat-
ment of an ideal plasma is to assume that Landau damping
is the only active damping mechanism; however, the
measurements of the initial plasma demonstrated that the
EPW damping was dominated by collisions. The hydrogen
gas was ionized at an intensity near 1014 W=cm2, where the
initial electron plasma temperature and density were
measured to be 3 eV and 8.40 × 1018 cm3, respectively.
Over the first 18 ps, the plasma temperature increased
modestly (16 eV) as the plasma density became fully
ionized (1.07 × 1019 cm3) and then rapidly increased to a
saturated level of 93 eV over the next 20 ps. During this
evolution, the plasma transitioned from a nonideal (Λ ∼ 1)
to an ideal (Λ ∼ 110) plasma. For temperatures below
45 eV, a collisional model was required to reproduce the
measured spectrum. For the most-collisional conditions,
the VFP scattering model shows that the BGK model

PHYSICAL REVIEW LETTERS 122, 155001 (2019)

0031-9007=19=122(15)=155001(6) 155001-1 © 2019 American Physical Society



6

In the strongly collisional regime, kλαβ≪1, (cf. e.g. Zhang, et al. Phys. Rev. Lett. 62, 1848 

(1989)) classical transport relations (Braginskii, (1965)) are used to evaluate frequency 

dependent electrical conductivity () *, + . 

Fluctuation-dissipation theorem:                                                               directly relates 

() *, + to the dynamical form factor.

But plasma needs to be in thermodynamical equilibrium, Te=Ti=T.

W. ROZMUS et al. PHYSICAL REVIEW E 96, 043207 (2017)

3. The dynamic form factor

Relations Eqs. (45) and (46) for δnt
a(k,ω) (a = e,i) have

been derived from the solutions to the kinetic equation in terms
of Laplace transformed quantities Eq. (33). They can be used
to construct the Fourier transformed correlation function in
accordance with Eq. (40). By using Eqs. (45) and (40), we
calculate the test density correlation functions:

⟨δnt
eδn

t
e⟩k,ω = 2nek

2λ2
De

ω
Im(χe − χc),

⟨δnt
iδn

t
i⟩k,ω = 2nek

2λ2
De

Z2ω

Ti

Te

Im(χi − χc),

⟨δnt
eδn

t
i⟩k,ω = − 2nek

2λ2
De

Zω

(
1 + Ti

Te

)
Im(χc). (50)

Substituting correlation function of test particle fluctuations
Eq. (50) into Eqs. (49) for the electron-electron correlation
functions we obtain the following expression for the dynamic
form factor S(k,ω) = ⟨δn2

e⟩k,ω/ne:

S(k,ω) = 2k2λ2
De

ω|ϵ|2

{
|1 + χi |2Im[χe − χC]

+ Ti

Te

|χe|2Im[χi − χC]

−
(

1 + Ti

Te

)
Re[(1 + χi)χ∗

e ]Im[χC]
}
. (51)

Equation (51) is the main result of our theory. In equilibrium
plasma, where Te = Ti Eq. (51) has the form identical to
Eq. (41). S(k,ω) Eq. (51) is valid in the entire regime of particle
collisionality, 0 ! kλαβ ! ∞, in weakly coupled plasmas and
it accounts for the collective plasma response in terms of Lang-
muir, ion-acoustic, and entropy wave resonances. Our result is
a generalization of the theory from Ref. [37]. As compared to
previous studies, S(k,ω) Eq. (51) includes the high-frequency
response, entropy waves, and charge separation effects and has
been derived from a complete solution of the kinetic equation
[18] without simplifying assumptions about the plasma param-
eters. For example, restrictions to Z ≫ 1 are not necessary. In
fact, it is for the first time that S(k,ω) Eq. (51) has been derived
in a form that allows applications to weakly coupled plasmas
at all k vectors and frequencies. We can obtain the results
with arbitrary accuracy, including for nonequilibrium plasmas
where Te ̸= Ti . We will describe applications of our theory
in unmagnetized plasmas with emphasis on laser produced
plasmas where Thomson scattering has become one of the
most important diagnostic technique.

In the collisionless limit of kλαβ ≫ 1, the dynamic form
factor S(k,ω) Eq. (51) takes the form of the well known ex-
pression [3], which was derived for the first time in Refs. [5– 8],
and it is equivalent to the classical limit of the random phase
approximation (RPA) expression [4]. The collisionless limit
of Eq. (51) can be achieved using definitions from Eq. (31)
and JR

A = 0, Ji = iJ+(ω/kvT i)/ω, JN
N = iJ+(ω/kvT e)/ω.

After introducing χV
α = W (ω/kvT a)/k2λ2

Da , we can show that
S(k,ω) Eq. (51) leads to

SV (k⃗,ω) =
√

2π

k

[( 1
vT e

)
exp

(
− ω2

2k2v2
T e

)∣∣1 + χV
i (k⃗,ω)

∣∣2 +
( 1

vT i

)
exp

(
− ω2

2k2v2
T i

)
|χV

e (k⃗,ω)|2
]

∣∣1 + χV
e (k⃗,ω) + χV

i (k⃗,ω)
∣∣2 , (52)

where the superscript V indicates collisionless dynamical
evolution of correlations that is described by the Vlasov
equation. The rest of this paper will examine effects of particle
collisions on the high frequency Langmuir wave spectra,
low-frequency ion acoustic and entropy fluctuations using
S(k⃗,ω) Eq. (51). We will compare Eq. (51) with results of the
theory of hydrodynamic fluctuations based on the Braginskii’s
model [15] and for the high-frequency plasma fluctuations we
will also discuss Born-Mermin (BM) theory [38,39] of plasma
response. Comparison with the BM approximation will help
to define limits of applicability of our theory in dense plasmas
approaching strongly coupled regime.

IV. RESULTS AND APPLICATIONS

The main application for the theory of the dynamic form
factor is in the calculation of the Thomson scattering cross
section [3]. In TS experiments, the k⃗ vector is defined by the
geometry of the scattering process, k⃗ = k⃗1 − k⃗0 (satisfying
ω = ω1 − ω0), where k0,1 = 2π/λ0,1 and ω0,1 are the wave
number and frequency of the pump (0) and scattered (1)
light waves. In experiments, the angle θ between k⃗0 and k⃗1 is
typically fixed, but the magnitude of k1 is changed as different

frequencies (wavelengths λ1) are examined in the scattered
light spectrum. It is customary to plot S(k⃗,ω) as a function of
λ1, and this will be done in the following.

A. Limit of strong collisions

As promised in Sec. III A we will first compare our theory
with earlier results [34], which were obtained using the
fluctuation-dissipation theorem (Te = Ti = T ) and Braginskii
transport equations [15] describing dissipation in the plasma in
terms of collisional transport coefficients. These papers [34]
included experimental results from TS experiments with a
CO2 laser probe that were well reproduced by the theoretical
form factor. Some discrepancies are always expected as the
Braginskii hydrodynamics and transport relations are valid in
the kλab ≪ 1 limit, where k is inverse of the gradient scale
length and λab are collisional mean-free-paths. The dynamic
form factor was defined via the fluctuation-dissipation theorem
[2,33] in the following form [40]:

S(k,ω) = k2T

πω2e2ne

Re[σe(k,ω)], (53)

where σe is the AC electric collisional conductivity that
describes the electron current responding to external electric
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λ1 -λ0  [Å] 

ωpeS(k,ω) 

FIG. 1. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 2 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 µm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

field perturbation acting on electrons. Braginskii’s equations
[15] that are used to evaluate σe were simplified and only
three dominant transport processes were retained described
by the electron thermal conductivity κe0 = 3.14nev

2
T e/νei , the

ion thermal conductivity κi0 = 3.91niv
2
T i/νii , and the ion

viscosity ηi0 = 0.96niTi/νii . All three transport coefficients
represent stationary (ω → 0) and local (k → 0) limits of
the transport coefficients that were introduced in transport
relations Eqs. (18) and (20) of our theory for plasmas with
Z = 1 according to the experimental conditions in Ref. [34].
With these approximations, the dynamical form factor Eq. (53)
has the following form [34]:

S(k,ω) = 2
A(k) + B(k)b(k)/D(k,ω)

[A(k) + B(k)b(k)/D(k,ω)]2ω2 + H (k,ω)2
,

H (k,ω) = 2 − ω2/ω2
0i + 1.5B(k)ω2/D(k,ω),

B(k) = 1 + 3(me/mi)neνei/(k2κe0),

A(k) = ne/(k2κe0) + (4/3)ηi0/(neT ),

D(k,ω) = (3ω/2)2 + b(k)2, ω0i = k(T/mi)1/2,

b(k) = k2κi0/ne + 3(me/mi)νei . (54)

Comparison between results for the dynamic form factor based
on Eq. (54) and our theory Eq. (51) is shown in Fig. 1.
At the typical plasma parameters from Ref. [34] used in
Fig. 1 we find that the collisional parameter for electrons
is kλei = 0.08 and for ions kλii = 0.11. The TS parameter
α = 1/(kλDe) = 489.7. While for these parameters electrons
can be described by the Braginskii transport theory, i.e.,
nonlocal effects are small, the ion response will nevertheless
be affected by nonlocal effects. In particular, the ion thermal
conductivity is reduced from the κi0 and this lowers the
damping of the entropy mode as it is seen in Fig. 4 of Ref. [18],
cf. also Ref. [20]. This explains the discrepancy between two
curves in Fig. 1 at the zero-frequency entropy mode.

This trend continues for plasma parameters corresponding
to less collisional plasmas. Figure 2 shows the results for in-
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FIG. 2. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 5 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 µm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

creased temperature of Te = Ti = 5 eV (the rest of parameters
are as in Fig. 1). In hotter plasmas, collisional parameters are
kλei = 0.38 and for ions kλii = 0.54 and the TS parameter is
α = 1/(kλDe) = 309.7.

Now, the strong collision theory Eq. (54) is not only
incorrect for the entropy mode but electron transport is also
in the nonlocal regime causing changes in the frequency
and damping of the ion-acoustic fluctuations. Again, results
in Fig. 2 reflect changes to the dispersion relations of the
ion-acoustic waves and entropy modes in the regime of weaker
collisions discussed in Ref. [18].

B. Low-frequency fluctuations

TS in the collective regime (α = (kλDe)−1 > 1) and in
the low frequency range (ω ! ωpi) is used to investigate
ion-acoustic and entropy mode fluctuations. For α ≫ 1 the
dynamic form factor S(k⃗,ω) characterizes long wavelength
fluctuations in the hydrodynamical regime as discussed in the
previous section. However, for the typical conditions in laser-
produced plasmas, S(k⃗,ω) will be in the weakly collisional
regime where damping and dispersion of the modes depend
on the nonlocal and nonstationary properties of transport
relations. To illustrate these features of the S(k⃗,ω) theory,
we will first address a typical regime encountered in carbon
plasmas that is characteristic of laser produced plasmas at
modest intensities. In fact, we will discuss results relevant to
measurements in Ref. [27] (cf. Fig. 4 therein). Consider the
TS probe at λ0 = 5270 Å, a scattering angle of θ = 117◦, with
Te = 100 eV, ne = 5.6 1018 cm−3, and α = 1.58 in carbon
plasmas. At these conditions kλei = 133 and therefore electron
collisions have no effect on the TS cross-section. On the other
hand, for the three ion temperatures examined in Ref. [27]
ion-ion collisions play a role and their effects are illustrated in
Fig. 3.

Figure 3 displays three panels (a), (b), and (c) that
show redshifted ion-acoustic peaks calculated for the above
plasma parameters and for different ion temperatures using
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FIG. 1. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 2 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 µm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

field perturbation acting on electrons. Braginskii’s equations
[15] that are used to evaluate σe were simplified and only
three dominant transport processes were retained described
by the electron thermal conductivity κe0 = 3.14nev

2
T e/νei , the

ion thermal conductivity κi0 = 3.91niv
2
T i/νii , and the ion

viscosity ηi0 = 0.96niTi/νii . All three transport coefficients
represent stationary (ω → 0) and local (k → 0) limits of
the transport coefficients that were introduced in transport
relations Eqs. (18) and (20) of our theory for plasmas with
Z = 1 according to the experimental conditions in Ref. [34].
With these approximations, the dynamical form factor Eq. (53)
has the following form [34]:

S(k,ω) = 2
A(k) + B(k)b(k)/D(k,ω)

[A(k) + B(k)b(k)/D(k,ω)]2ω2 + H (k,ω)2
,

H (k,ω) = 2 − ω2/ω2
0i + 1.5B(k)ω2/D(k,ω),

B(k) = 1 + 3(me/mi)neνei/(k2κe0),

A(k) = ne/(k2κe0) + (4/3)ηi0/(neT ),

D(k,ω) = (3ω/2)2 + b(k)2, ω0i = k(T/mi)1/2,

b(k) = k2κi0/ne + 3(me/mi)νei . (54)

Comparison between results for the dynamic form factor based
on Eq. (54) and our theory Eq. (51) is shown in Fig. 1.
At the typical plasma parameters from Ref. [34] used in
Fig. 1 we find that the collisional parameter for electrons
is kλei = 0.08 and for ions kλii = 0.11. The TS parameter
α = 1/(kλDe) = 489.7. While for these parameters electrons
can be described by the Braginskii transport theory, i.e.,
nonlocal effects are small, the ion response will nevertheless
be affected by nonlocal effects. In particular, the ion thermal
conductivity is reduced from the κi0 and this lowers the
damping of the entropy mode as it is seen in Fig. 4 of Ref. [18],
cf. also Ref. [20]. This explains the discrepancy between two
curves in Fig. 1 at the zero-frequency entropy mode.

This trend continues for plasma parameters corresponding
to less collisional plasmas. Figure 2 shows the results for in-
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FIG. 2. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 5 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 µm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

creased temperature of Te = Ti = 5 eV (the rest of parameters
are as in Fig. 1). In hotter plasmas, collisional parameters are
kλei = 0.38 and for ions kλii = 0.54 and the TS parameter is
α = 1/(kλDe) = 309.7.

Now, the strong collision theory Eq. (54) is not only
incorrect for the entropy mode but electron transport is also
in the nonlocal regime causing changes in the frequency
and damping of the ion-acoustic fluctuations. Again, results
in Fig. 2 reflect changes to the dispersion relations of the
ion-acoustic waves and entropy modes in the regime of weaker
collisions discussed in Ref. [18].

B. Low-frequency fluctuations

TS in the collective regime (α = (kλDe)−1 > 1) and in
the low frequency range (ω ! ωpi) is used to investigate
ion-acoustic and entropy mode fluctuations. For α ≫ 1 the
dynamic form factor S(k⃗,ω) characterizes long wavelength
fluctuations in the hydrodynamical regime as discussed in the
previous section. However, for the typical conditions in laser-
produced plasmas, S(k⃗,ω) will be in the weakly collisional
regime where damping and dispersion of the modes depend
on the nonlocal and nonstationary properties of transport
relations. To illustrate these features of the S(k⃗,ω) theory,
we will first address a typical regime encountered in carbon
plasmas that is characteristic of laser produced plasmas at
modest intensities. In fact, we will discuss results relevant to
measurements in Ref. [27] (cf. Fig. 4 therein). Consider the
TS probe at λ0 = 5270 Å, a scattering angle of θ = 117◦, with
Te = 100 eV, ne = 5.6 1018 cm−3, and α = 1.58 in carbon
plasmas. At these conditions kλei = 133 and therefore electron
collisions have no effect on the TS cross-section. On the other
hand, for the three ion temperatures examined in Ref. [27]
ion-ion collisions play a role and their effects are illustrated in
Fig. 3.

Figure 3 displays three panels (a), (b), and (c) that
show redshifted ion-acoustic peaks calculated for the above
plasma parameters and for different ion temperatures using
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FIG. 1. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 2 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 µm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

field perturbation acting on electrons. Braginskii’s equations
[15] that are used to evaluate σe were simplified and only
three dominant transport processes were retained described
by the electron thermal conductivity κe0 = 3.14nev

2
T e/νei , the

ion thermal conductivity κi0 = 3.91niv
2
T i/νii , and the ion

viscosity ηi0 = 0.96niTi/νii . All three transport coefficients
represent stationary (ω → 0) and local (k → 0) limits of
the transport coefficients that were introduced in transport
relations Eqs. (18) and (20) of our theory for plasmas with
Z = 1 according to the experimental conditions in Ref. [34].
With these approximations, the dynamical form factor Eq. (53)
has the following form [34]:

S(k,ω) = 2
A(k) + B(k)b(k)/D(k,ω)

[A(k) + B(k)b(k)/D(k,ω)]2ω2 + H (k,ω)2
,

H (k,ω) = 2 − ω2/ω2
0i + 1.5B(k)ω2/D(k,ω),

B(k) = 1 + 3(me/mi)neνei/(k2κe0),

A(k) = ne/(k2κe0) + (4/3)ηi0/(neT ),

D(k,ω) = (3ω/2)2 + b(k)2, ω0i = k(T/mi)1/2,

b(k) = k2κi0/ne + 3(me/mi)νei . (54)

Comparison between results for the dynamic form factor based
on Eq. (54) and our theory Eq. (51) is shown in Fig. 1.
At the typical plasma parameters from Ref. [34] used in
Fig. 1 we find that the collisional parameter for electrons
is kλei = 0.08 and for ions kλii = 0.11. The TS parameter
α = 1/(kλDe) = 489.7. While for these parameters electrons
can be described by the Braginskii transport theory, i.e.,
nonlocal effects are small, the ion response will nevertheless
be affected by nonlocal effects. In particular, the ion thermal
conductivity is reduced from the κi0 and this lowers the
damping of the entropy mode as it is seen in Fig. 4 of Ref. [18],
cf. also Ref. [20]. This explains the discrepancy between two
curves in Fig. 1 at the zero-frequency entropy mode.

This trend continues for plasma parameters corresponding
to less collisional plasmas. Figure 2 shows the results for in-
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FIG. 2. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 5 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 µm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

creased temperature of Te = Ti = 5 eV (the rest of parameters
are as in Fig. 1). In hotter plasmas, collisional parameters are
kλei = 0.38 and for ions kλii = 0.54 and the TS parameter is
α = 1/(kλDe) = 309.7.

Now, the strong collision theory Eq. (54) is not only
incorrect for the entropy mode but electron transport is also
in the nonlocal regime causing changes in the frequency
and damping of the ion-acoustic fluctuations. Again, results
in Fig. 2 reflect changes to the dispersion relations of the
ion-acoustic waves and entropy modes in the regime of weaker
collisions discussed in Ref. [18].

B. Low-frequency fluctuations

TS in the collective regime (α = (kλDe)−1 > 1) and in
the low frequency range (ω ! ωpi) is used to investigate
ion-acoustic and entropy mode fluctuations. For α ≫ 1 the
dynamic form factor S(k⃗,ω) characterizes long wavelength
fluctuations in the hydrodynamical regime as discussed in the
previous section. However, for the typical conditions in laser-
produced plasmas, S(k⃗,ω) will be in the weakly collisional
regime where damping and dispersion of the modes depend
on the nonlocal and nonstationary properties of transport
relations. To illustrate these features of the S(k⃗,ω) theory,
we will first address a typical regime encountered in carbon
plasmas that is characteristic of laser produced plasmas at
modest intensities. In fact, we will discuss results relevant to
measurements in Ref. [27] (cf. Fig. 4 therein). Consider the
TS probe at λ0 = 5270 Å, a scattering angle of θ = 117◦, with
Te = 100 eV, ne = 5.6 1018 cm−3, and α = 1.58 in carbon
plasmas. At these conditions kλei = 133 and therefore electron
collisions have no effect on the TS cross-section. On the other
hand, for the three ion temperatures examined in Ref. [27]
ion-ion collisions play a role and their effects are illustrated in
Fig. 3.

Figure 3 displays three panels (a), (b), and (c) that
show redshifted ion-acoustic peaks calculated for the above
plasma parameters and for different ion temperatures using
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FIG. 1. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 2 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 µm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

field perturbation acting on electrons. Braginskii’s equations
[15] that are used to evaluate σe were simplified and only
three dominant transport processes were retained described
by the electron thermal conductivity κe0 = 3.14nev

2
T e/νei , the

ion thermal conductivity κi0 = 3.91niv
2
T i/νii , and the ion

viscosity ηi0 = 0.96niTi/νii . All three transport coefficients
represent stationary (ω → 0) and local (k → 0) limits of
the transport coefficients that were introduced in transport
relations Eqs. (18) and (20) of our theory for plasmas with
Z = 1 according to the experimental conditions in Ref. [34].
With these approximations, the dynamical form factor Eq. (53)
has the following form [34]:

S(k,ω) = 2
A(k) + B(k)b(k)/D(k,ω)

[A(k) + B(k)b(k)/D(k,ω)]2ω2 + H (k,ω)2
,

H (k,ω) = 2 − ω2/ω2
0i + 1.5B(k)ω2/D(k,ω),

B(k) = 1 + 3(me/mi)neνei/(k2κe0),

A(k) = ne/(k2κe0) + (4/3)ηi0/(neT ),

D(k,ω) = (3ω/2)2 + b(k)2, ω0i = k(T/mi)1/2,

b(k) = k2κi0/ne + 3(me/mi)νei . (54)

Comparison between results for the dynamic form factor based
on Eq. (54) and our theory Eq. (51) is shown in Fig. 1.
At the typical plasma parameters from Ref. [34] used in
Fig. 1 we find that the collisional parameter for electrons
is kλei = 0.08 and for ions kλii = 0.11. The TS parameter
α = 1/(kλDe) = 489.7. While for these parameters electrons
can be described by the Braginskii transport theory, i.e.,
nonlocal effects are small, the ion response will nevertheless
be affected by nonlocal effects. In particular, the ion thermal
conductivity is reduced from the κi0 and this lowers the
damping of the entropy mode as it is seen in Fig. 4 of Ref. [18],
cf. also Ref. [20]. This explains the discrepancy between two
curves in Fig. 1 at the zero-frequency entropy mode.

This trend continues for plasma parameters corresponding
to less collisional plasmas. Figure 2 shows the results for in-
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FIG. 2. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 5 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 µm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

creased temperature of Te = Ti = 5 eV (the rest of parameters
are as in Fig. 1). In hotter plasmas, collisional parameters are
kλei = 0.38 and for ions kλii = 0.54 and the TS parameter is
α = 1/(kλDe) = 309.7.

Now, the strong collision theory Eq. (54) is not only
incorrect for the entropy mode but electron transport is also
in the nonlocal regime causing changes in the frequency
and damping of the ion-acoustic fluctuations. Again, results
in Fig. 2 reflect changes to the dispersion relations of the
ion-acoustic waves and entropy modes in the regime of weaker
collisions discussed in Ref. [18].

B. Low-frequency fluctuations

TS in the collective regime (α = (kλDe)−1 > 1) and in
the low frequency range (ω ! ωpi) is used to investigate
ion-acoustic and entropy mode fluctuations. For α ≫ 1 the
dynamic form factor S(k⃗,ω) characterizes long wavelength
fluctuations in the hydrodynamical regime as discussed in the
previous section. However, for the typical conditions in laser-
produced plasmas, S(k⃗,ω) will be in the weakly collisional
regime where damping and dispersion of the modes depend
on the nonlocal and nonstationary properties of transport
relations. To illustrate these features of the S(k⃗,ω) theory,
we will first address a typical regime encountered in carbon
plasmas that is characteristic of laser produced plasmas at
modest intensities. In fact, we will discuss results relevant to
measurements in Ref. [27] (cf. Fig. 4 therein). Consider the
TS probe at λ0 = 5270 Å, a scattering angle of θ = 117◦, with
Te = 100 eV, ne = 5.6 1018 cm−3, and α = 1.58 in carbon
plasmas. At these conditions kλei = 133 and therefore electron
collisions have no effect on the TS cross-section. On the other
hand, for the three ion temperatures examined in Ref. [27]
ion-ion collisions play a role and their effects are illustrated in
Fig. 3.

Figure 3 displays three panels (a), (b), and (c) that
show redshifted ion-acoustic peaks calculated for the above
plasma parameters and for different ion temperatures using
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Fluctuations of dynamical quantities evolve in accordance with the same model equations 
as those governing macroscopic processes. Thus, for example, fluctuations on 
hydrodynamical scale relax due to collisions according to the equations of linearized 
hydrodynamics. Or linearized kinetic equation provides description over full range of scales 
and frequencies.
We used nonlocal, nonstationary hydrodynamics to evaluate correlation function of 
electron density fluctuations (cf. W. Rozmus et al. Phys. Rev. E96, 043207 (2017)). Our 
nonlocal hydro model is equivalent to the solution of linearized kinetic equation.
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software package. The calculations were performed for lmax =
8 resulting in an error related to the closure procedure that
does not exceed 1–2%.

Now, to exclude initial perturbation from Eqs. (6)
and (7), we take the first moments of the ki-
netic equation to calculate δna = 4π

∫ ∞
0 f a

0 v2dv, δTa =
(4πma/3na)

∫ ∞
0 dvv2(v2 −3v2

T a)f a
0 (a = e,i) and ui :

δne

ne

= i
eE

kTe

+
(

δne(0)
ne

−ω
eE

kTe

)
J eN

N

+ 3
2

δTe(0)
Te

J eT
N −ikuiJ

eR
N ,

δTe

Te

=
(

δne(0)
ne

−ω
eE

kTe

)
J eN

T + 3
2

δTe(0)
Te

J eT
T −ikuiJ

eR
T ,

(11)

ikui =
(

δni(0)
ni

+ ω
ZeniE + Rie

kniTi

)(
1 + iωJ iN

N

)

+ 3
2

δTi(0)
Ti

iωJ iN
T ,

δTi

Ti

=
(

δni(0)
ni

+ ω
ZeniE + Rie

kniTi

)
J iT

N + 3
2

δTi(0)
Ti

J iT
T ,

(12)

where

J bA
B = 4π

nb

∫ ∞

0
v2dvψbA

0 f b
MSbB, (B = N,T ),

J eA
R = 4π

ne

∫ ∞

0
v2dvψeA

1 f e
MSR. (13)

Finally, one can derive f a
0 using hydrodynamic moments:

f e
l = i

eE

kTe

f e
M +

(
δne

ne

−i
eE

kTe

)
J eT

T ψeN
l −J eN

T ψeT
l

DeNT
NT

f e
M

+ δTe

Te

J eN
N ψeT

l −J eT
N ψeN

l

DeNT
NT

f e
M (14)

−ikui

(
ψeR

l −DeRT
NT

DeNT
NT

ψeN
l −DeNR

NT

DeNT
NT

ψeT
l

)
f e

M,

f i
l = i

ZeniE + Rie

kniTi

f i
Mδl0 + ikui

J iT
T ψ iN

l −J iN
T ψ iT

l

J iT
T + iωDiNT

NT

f i
M

+ δTi

Ti

(
1 + iωJ iN

N

)
ψ iT

l −iωJ iT
N ψ iN

l

J iT
T + iωDiNT

NT

f i
M, (15)

where DbCD
AB = J bC

A J bD
B −J bD

A J bC
B . We have described above

a procedure that allows on reducing kinetic equations to the
system of hydrodynamic equations for the first few moments
of the distribution functions. This will be further discussed in
the next section.

D. Nonlocal and nonstationary hydrodynamics

The first three moments of the kinetic equation give
the equations of continuity, motion, and energy balance for
electrons (a = e) and ions (a = i). After taking their Fourier
transform, linearizing the fluid equations and keeping only

components of perturbed vector and tensor quantities along the
k vector, we find the following set of hydrodynamic equations
in the electrostatic approximation:

∂δna

∂t
+ naikua = 0,

∂ua

∂t
= ea

ma

Ea
∗ − 1

mana

ik&a
∥ + 1

mana

Rab, (16)

∂δTa

∂t
+ 2

3na

ikqa + 2
3
Taikua = 0,

where the friction force satisfies Rei = −Rie, and Rie =
Rie −meneν

T
eiui , E∗

a = E −ik(δnaTa + naδTa)/(eana) is the
effective electric field, and

&a
∥ = 8πma

15

∫
dvv4f a

2 , qa = 2πTa

3

∫
dvv3

(
v2

v2
T a

−5
)

f a
1

(17)

are the longitudinal components of the stress tensor, &a
∥ , and

the particle thermal flux, qa . The following transport relations
for electron fluxes were obtained before in Refs. [16,32]:

qe = −αTe

σ
j −κeikδTe −neTeβui,

E∗
e = j

σ
−α

σ
ikδTe −βj

σ
eneui,

Rie = −(1 −βj )
σ

enj +
(

β + eα

σ

)
ikneδTe

+
(

e2neβj (1 −βj )
σ

−meβrν
T
ei

)
neui, (18)

where j =
∑

a eanaua and the transport coefficients: σ , the
electrical conductivity; κe, the electron thermal conductivity;
α, the thermocurrent coefficient; and different convection
transport coefficients, β, βj , βr , were introduced before in
Refs. [16,32]. They can be expressed in terms of functions
J bA

B , J eA
R [Eq. (13)] in the following form:

σ = e2ne

k2Te

(
J eT

T

DeNT
NT

+ iω

)
,

α = −ene

k2Te

(
J eN

T + J eT
T

DeNT
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+ iω

)
,

βj = 1 −DeRT
NT

DeNT
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, β = 1 + J eN
T −J eR

T + iωDeRN
NT

J eT
T + iωDeNT

NT

,

βr = 1 + k2v2
T e

νT
ei

(
J eR

R + J eR
T DeRN

NT −J eR
N DeRT

NT

DeNT
NT

)
,

κa = na

k2

(
1 + iωJ aN

N

J aT
T + iωDaNT

NT

+ 3
2
iω

)
, (19)

where the thermal transport coefficient, κa , is defined for both,
electrons, a = e, and ions, a = i. The transport relations for
ion fluxes read [21,22]

qi = −κi ikδTi −βiniTiui, &∥ = −4/3ikηiui −βiniδTi,

(20)
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software package. The calculations were performed for lmax =
8 resulting in an error related to the closure procedure that
does not exceed 1–2%.

Now, to exclude initial perturbation from Eqs. (6)
and (7), we take the first moments of the ki-
netic equation to calculate δna = 4π
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Finally, one can derive f a
0 using hydrodynamic moments:

f e
l = i

eE

kTe

f e
M +

(
δne

ne

−i
eE

kTe

)
J eT

T ψeN
l −J eN

T ψeT
l

DeNT
NT

f e
M

+ δTe

Te

J eN
N ψeT

l −J eT
N ψeN

l

DeNT
NT

f e
M (14)

−ikui

(
ψeR

l −DeRT
NT

DeNT
NT

ψeN
l −DeNR

NT

DeNT
NT

ψeT
l

)
f e

M,

f i
l = i

ZeniE + Rie

kniTi

f i
Mδl0 + ikui

J iT
T ψ iN

l −J iN
T ψ iT

l

J iT
T + iωDiNT

NT

f i
M

+ δTi

Ti

(
1 + iωJ iN

N

)
ψ iT

l −iωJ iT
N ψ iN

l

J iT
T + iωDiNT

NT

f i
M, (15)

where DbCD
AB = J bC

A J bD
B −J bD

A J bC
B . We have described above

a procedure that allows on reducing kinetic equations to the
system of hydrodynamic equations for the first few moments
of the distribution functions. This will be further discussed in
the next section.

D. Nonlocal and nonstationary hydrodynamics

The first three moments of the kinetic equation give
the equations of continuity, motion, and energy balance for
electrons (a = e) and ions (a = i). After taking their Fourier
transform, linearizing the fluid equations and keeping only

components of perturbed vector and tensor quantities along the
k vector, we find the following set of hydrodynamic equations
in the electrostatic approximation:
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where the friction force satisfies Rei = −Rie, and Rie =
Rie −meneν

T
eiui , E∗

a = E −ik(δnaTa + naδTa)/(eana) is the
effective electric field, and
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are the longitudinal components of the stress tensor, &a
∥ , and

the particle thermal flux, qa . The following transport relations
for electron fluxes were obtained before in Refs. [16,32]:
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where j =
∑

a eanaua and the transport coefficients: σ , the
electrical conductivity; κe, the electron thermal conductivity;
α, the thermocurrent coefficient; and different convection
transport coefficients, β, βj , βr , were introduced before in
Refs. [16,32]. They can be expressed in terms of functions
J bA

B , J eA
R [Eq. (13)] in the following form:
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where the thermal transport coefficient, κa , is defined for both,
electrons, a = e, and ions, a = i. The transport relations for
ion fluxes read [21,22]

qi = −κi ikδTi −βiniTiui, &∥ = −4/3ikηiui −βiniδTi,

(20)
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software package. The calculations were performed for lmax =
8 resulting in an error related to the closure procedure that
does not exceed 1–2%.

Now, to exclude initial perturbation from Eqs. (6)
and (7), we take the first moments of the ki-
netic equation to calculate δna = 4π
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where DbCD
AB = J bC

A J bD
B −J bD

A J bC
B . We have described above

a procedure that allows on reducing kinetic equations to the
system of hydrodynamic equations for the first few moments
of the distribution functions. This will be further discussed in
the next section.

D. Nonlocal and nonstationary hydrodynamics

The first three moments of the kinetic equation give
the equations of continuity, motion, and energy balance for
electrons (a = e) and ions (a = i). After taking their Fourier
transform, linearizing the fluid equations and keeping only

components of perturbed vector and tensor quantities along the
k vector, we find the following set of hydrodynamic equations
in the electrostatic approximation:
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where the friction force satisfies Rei = −Rie, and Rie =
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effective electric field, and
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are the longitudinal components of the stress tensor, &a
∥ , and

the particle thermal flux, qa . The following transport relations
for electron fluxes were obtained before in Refs. [16,32]:

qe = −αTe
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j −κeikδTe −neTeβui,
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e = j
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where j =
∑

a eanaua and the transport coefficients: σ , the
electrical conductivity; κe, the electron thermal conductivity;
α, the thermocurrent coefficient; and different convection
transport coefficients, β, βj , βr , were introduced before in
Refs. [16,32]. They can be expressed in terms of functions
J bA

B , J eA
R [Eq. (13)] in the following form:
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where the thermal transport coefficient, κa , is defined for both,
electrons, a = e, and ions, a = i. The transport relations for
ion fluxes read [21,22]

qi = −κi ikδTi −βiniTiui, &∥ = −4/3ikηiui −βiniδTi,
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software package. The calculations were performed for lmax =
8 resulting in an error related to the closure procedure that
does not exceed 1–2%.

Now, to exclude initial perturbation from Eqs. (6)
and (7), we take the first moments of the ki-
netic equation to calculate δna = 4π
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where DbCD
AB = J bC

A J bD
B −J bD

A J bC
B . We have described above

a procedure that allows on reducing kinetic equations to the
system of hydrodynamic equations for the first few moments
of the distribution functions. This will be further discussed in
the next section.

D. Nonlocal and nonstationary hydrodynamics

The first three moments of the kinetic equation give
the equations of continuity, motion, and energy balance for
electrons (a = e) and ions (a = i). After taking their Fourier
transform, linearizing the fluid equations and keeping only

components of perturbed vector and tensor quantities along the
k vector, we find the following set of hydrodynamic equations
in the electrostatic approximation:
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effective electric field, and
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are the longitudinal components of the stress tensor, &a
∥ , and

the particle thermal flux, qa . The following transport relations
for electron fluxes were obtained before in Refs. [16,32]:
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where j =
∑

a eanaua and the transport coefficients: σ , the
electrical conductivity; κe, the electron thermal conductivity;
α, the thermocurrent coefficient; and different convection
transport coefficients, β, βj , βr , were introduced before in
Refs. [16,32]. They can be expressed in terms of functions
J bA

B , J eA
R [Eq. (13)] in the following form:
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where the thermal transport coefficient, κa , is defined for both,
electrons, a = e, and ions, a = i. The transport relations for
ion fluxes read [21,22]

qi = −κi ikδTi −βiniTiui, &∥ = −4/3ikηiui −βiniδTi,
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perturbation applied to the plasma. We will derive expressions
for the electron density of fluctuations δne and the density-
density correlation function Gab(ρ⃗,τ ) = ⟨δna(r⃗ ,t)δnb(r⃗ ′,t ′)⟩,
where ρ⃗ = r⃗ − r⃗ ′ and τ = t − t ′. Of particular interest will
be dynamic form factor S(k,ω) related to the Fourier-Fourier
transform of the electron density correlation function:

S(k,ω) =
〈
δn2

e

〉
k,ω

ne

= 1
ne

∫
d3ρ

∫
dτeiωτ − ik⃗·ρ⃗Gee(ρ⃗,τ ).

(32)

A. Fluctuations in equilibrium plasma

Consider first electron density fluctuations in a complete
equilibrium state of a plasma, where T = Te = Ti. In this
case, the density fluctuations can be calculated as a full system
response to the initial perturbations. On the other hand, in the
case of a nonequilibrium plasma with different temperatures of
electrons and ions, which is discussed in the next subsection,
will require separate treatment of each species in addition to
calculations of the self-consistent field from the full system
response. The initial perturbations of the plasma electron
density are introduced by taking the Laplace transformation of
the transport Eqs. (16). In particular,

∫ ∞

0
dteiωt ∂δne

∂t
= − iωδñe(k,ω) − δne(0), (33)

where δñe indicates the Lapalce transformed electron density
perturbation, δñe(k,ω) =

∫ +∞
0 dteiωtδne(k,t) and δne(0) ≡

δne(k,0) is the initial perturbation. It is helpful to distinguish
between Laplace transformed perturbations and the Fourier
transformed quantities that were used before. Using the
Laplace transformed Eqs. (16) one can eliminate temperature
perturbations from the expressions for the friction force and
the electric current:

j̃ = &e

[
− ie2ne

k2T
ωẼ + eneũi&1 + ie

k
δne(0)

]
,

R̃ie = − eneẼ + ik2T

eω

[
j̃&1 − eneũi&2 − ie

k
δne(0)

]
.

(34)

Combining Eqs. (25) and (34), we can express the average ion
flow velocity in terms of the electrostatic field and the initial
density perturbations,

ikũi = k2λ2
De

{
χi

eẼω

kT
− δne(0)

ne

χC

}
, (35)

where we have introduced a term, χC , that is proportional to
the electron-ion collision frequency. Here, e-i collisions are
responsible for coupling of electrons to ion evolution through
friction force and ion velocity terms in Eqs. (16),

χC = &i

k2λ2
Di

&1&e − 1
1 − g&i

(
&2

1&e − &2
)

≡ 1 + iωJ iN
N

k2λ2
Di

iωJ eR
N

1 − igω
(
1 + iωJ iN

N

)
J̃ R

R

. (36)

Next, we can eliminate the electrostatic field Ẽ by means of
the Maxwell equation − iωẼ + 4π j̃ = 0,

Ẽ = kT

eωϵ(k,ω)
δne(0)

ne

χe(ω,k), (37)

where we used the following relations:

ϵ = 1 + &e

k2λ2
D

+ χi&1&e,

χe = &e

k2λ2
D

+ χC&1&e, (38)

which follow from Eqs. (28), (29), and (36). Finally, we
substitute the expressions for j̃ [Eq. (34)], ũi [Eq. (35)], and Ẽ
[Eq. (37)] into the first equation of the system Eq. (16) for δñe

and write the Fourier-Laplace transformed electron density
fluctuation in terms of initial values δne(k,0),

δñe(ω,k) = i

ω

{
1 − k2λ2

De

χe(1 + χi)
ϵ

+ k2λ2
DeχC

}
δne(0).

(39)

The relation Eq. (39) for δñe(ω,k) has been derived from
the solutions to the kinetic equation in terms of Laplace
transformed quantities, which evolve in response to the initial
perturbation, δna(k,0). Using these quantities we have to
define the pair correlation function in the Fourier space
⟨δnaδnb⟩k,ω as follows:

⟨δnaδnb⟩k,ω = Re[⟨δña(k,ω)δnb(− k,0)⟩
+ ⟨δñb(k,ω)δna(− k,0)⟩]. (40)

For the initial density correlation function, we will as-
sume a simple equilibrium plasma result consistent with
the weakly coupled limit, Gab(k,0) = ⟨δna(k,0)δnb(− k,0)⟩ =
nbδab. This leads to the following expression for the Fourier-
Fourier transformed electron density correlation function for
the density fluctuations about the complete equilibrium state
(Te = Ti),

⟨δn2
e⟩ω,k = 2k2λ2

Dene

ω
Im

[
χe(1 + χi)

ϵ
− χC

]
. (41)

We can recover from Eq. (41) the well-known limit of the
collisionless plasma where the susceptibility functions χe,
χi [Eq. (28)] are evaluated using Eq. (31) as discussed at
the end of Sec. II and the coupling due to electron-ion
collisions is neglected, χC = 0. Validity of Eq. (41) in the
strong-collision limit will be discussed in Sec. IV where we
will compare Eq. (41) with the results of the fluctuation-
dissipation theorem [33] and the full set of classical hydro-
dynamic equations describing fluctuations. One can apply
the fluctuation-dissipation theorem because we have dealt so
far with complete plasma equilibrium conditions (Te = Ti).
Such calculations and experimental results were discussed in
Refs. [34] where dissipation was described in the strongly
collisional limit using Braginskii’s transport equations [15].

B. Fluctuations in two-temperature plasma

The same procedure of Sec. III A when it is formally applied
to nonequilibrium plasmas with two different background
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perturbation applied to the plasma. We will derive expressions
for the electron density of fluctuations δne and the density-
density correlation function Gab(ρ⃗,τ ) = ⟨δna(r⃗ ,t)δnb(r⃗ ′,t ′)⟩,
where ρ⃗ = r⃗ − r⃗ ′ and τ = t − t ′. Of particular interest will
be dynamic form factor S(k,ω) related to the Fourier-Fourier
transform of the electron density correlation function:
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A. Fluctuations in equilibrium plasma

Consider first electron density fluctuations in a complete
equilibrium state of a plasma, where T = Te = Ti. In this
case, the density fluctuations can be calculated as a full system
response to the initial perturbations. On the other hand, in the
case of a nonequilibrium plasma with different temperatures of
electrons and ions, which is discussed in the next subsection,
will require separate treatment of each species in addition to
calculations of the self-consistent field from the full system
response. The initial perturbations of the plasma electron
density are introduced by taking the Laplace transformation of
the transport Eqs. (16). In particular,
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∫ +∞
0 dteiωtδne(k,t) and δne(0) ≡
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perturbations from the expressions for the friction force and
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j̃ = &e

[
− ie2ne

k2T
ωẼ + eneũi&1 + ie

k
δne(0)

]
,

R̃ie = − eneẼ + ik2T

eω

[
j̃&1 − eneũi&2 − ie

k
δne(0)

]
.

(34)

Combining Eqs. (25) and (34), we can express the average ion
flow velocity in terms of the electrostatic field and the initial
density perturbations,

ikũi = k2λ2
De

{
χi

eẼω

kT
− δne(0)

ne

χC

}
, (35)

where we have introduced a term, χC , that is proportional to
the electron-ion collision frequency. Here, e-i collisions are
responsible for coupling of electrons to ion evolution through
friction force and ion velocity terms in Eqs. (16),

χC = &i

k2λ2
Di

&1&e − 1
1 − g&i

(
&2

1&e − &2
)

≡ 1 + iωJ iN
N

k2λ2
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iωJ eR
N

1 − igω
(
1 + iωJ iN

N

)
J̃ R

R

. (36)

Next, we can eliminate the electrostatic field Ẽ by means of
the Maxwell equation − iωẼ + 4π j̃ = 0,

Ẽ = kT

eωϵ(k,ω)
δne(0)

ne

χe(ω,k), (37)

where we used the following relations:

ϵ = 1 + &e

k2λ2
D

+ χi&1&e,

χe = &e

k2λ2
D

+ χC&1&e, (38)

which follow from Eqs. (28), (29), and (36). Finally, we
substitute the expressions for j̃ [Eq. (34)], ũi [Eq. (35)], and Ẽ
[Eq. (37)] into the first equation of the system Eq. (16) for δñe

and write the Fourier-Laplace transformed electron density
fluctuation in terms of initial values δne(k,0),

δñe(ω,k) = i

ω

{
1 − k2λ2

De

χe(1 + χi)
ϵ

+ k2λ2
DeχC

}
δne(0).

(39)

The relation Eq. (39) for δñe(ω,k) has been derived from
the solutions to the kinetic equation in terms of Laplace
transformed quantities, which evolve in response to the initial
perturbation, δna(k,0). Using these quantities we have to
define the pair correlation function in the Fourier space
⟨δnaδnb⟩k,ω as follows:

⟨δnaδnb⟩k,ω = Re[⟨δña(k,ω)δnb(− k,0)⟩
+ ⟨δñb(k,ω)δna(− k,0)⟩]. (40)

For the initial density correlation function, we will as-
sume a simple equilibrium plasma result consistent with
the weakly coupled limit, Gab(k,0) = ⟨δna(k,0)δnb(− k,0)⟩ =
nbδab. This leads to the following expression for the Fourier-
Fourier transformed electron density correlation function for
the density fluctuations about the complete equilibrium state
(Te = Ti),

⟨δn2
e⟩ω,k = 2k2λ2

Dene

ω
Im

[
χe(1 + χi)

ϵ
− χC

]
. (41)

We can recover from Eq. (41) the well-known limit of the
collisionless plasma where the susceptibility functions χe,
χi [Eq. (28)] are evaluated using Eq. (31) as discussed at
the end of Sec. II and the coupling due to electron-ion
collisions is neglected, χC = 0. Validity of Eq. (41) in the
strong-collision limit will be discussed in Sec. IV where we
will compare Eq. (41) with the results of the fluctuation-
dissipation theorem [33] and the full set of classical hydro-
dynamic equations describing fluctuations. One can apply
the fluctuation-dissipation theorem because we have dealt so
far with complete plasma equilibrium conditions (Te = Ti).
Such calculations and experimental results were discussed in
Refs. [34] where dissipation was described in the strongly
collisional limit using Braginskii’s transport equations [15].

B. Fluctuations in two-temperature plasma

The same procedure of Sec. III A when it is formally applied
to nonequilibrium plasmas with two different background
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perturbation applied to the plasma. We will derive expressions
for the electron density of fluctuations δne and the density-
density correlation function Gab(ρ⃗,τ ) = ⟨δna(r⃗ ,t)δnb(r⃗ ′,t ′)⟩,
where ρ⃗ = r⃗ − r⃗ ′ and τ = t − t ′. Of particular interest will
be dynamic form factor S(k,ω) related to the Fourier-Fourier
transform of the electron density correlation function:

S(k,ω) =
〈
δn2

e

〉
k,ω

ne

= 1
ne

∫
d3ρ

∫
dτeiωτ − ik⃗·ρ⃗Gee(ρ⃗,τ ).

(32)

A. Fluctuations in equilibrium plasma

Consider first electron density fluctuations in a complete
equilibrium state of a plasma, where T = Te = Ti. In this
case, the density fluctuations can be calculated as a full system
response to the initial perturbations. On the other hand, in the
case of a nonequilibrium plasma with different temperatures of
electrons and ions, which is discussed in the next subsection,
will require separate treatment of each species in addition to
calculations of the self-consistent field from the full system
response. The initial perturbations of the plasma electron
density are introduced by taking the Laplace transformation of
the transport Eqs. (16). In particular,

∫ ∞

0
dteiωt ∂δne

∂t
= − iωδñe(k,ω) − δne(0), (33)

where δñe indicates the Lapalce transformed electron density
perturbation, δñe(k,ω) =

∫ +∞
0 dteiωtδne(k,t) and δne(0) ≡

δne(k,0) is the initial perturbation. It is helpful to distinguish
between Laplace transformed perturbations and the Fourier
transformed quantities that were used before. Using the
Laplace transformed Eqs. (16) one can eliminate temperature
perturbations from the expressions for the friction force and
the electric current:

j̃ = &e

[
− ie2ne

k2T
ωẼ + eneũi&1 + ie

k
δne(0)

]
,

R̃ie = − eneẼ + ik2T

eω

[
j̃&1 − eneũi&2 − ie

k
δne(0)

]
.

(34)

Combining Eqs. (25) and (34), we can express the average ion
flow velocity in terms of the electrostatic field and the initial
density perturbations,

ikũi = k2λ2
De

{
χi

eẼω

kT
− δne(0)

ne

χC

}
, (35)

where we have introduced a term, χC , that is proportional to
the electron-ion collision frequency. Here, e-i collisions are
responsible for coupling of electrons to ion evolution through
friction force and ion velocity terms in Eqs. (16),

χC = &i

k2λ2
Di

&1&e − 1
1 − g&i

(
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1&e − &2
)

≡ 1 + iωJ iN
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. (36)

Next, we can eliminate the electrostatic field Ẽ by means of
the Maxwell equation − iωẼ + 4π j̃ = 0,

Ẽ = kT

eωϵ(k,ω)
δne(0)

ne

χe(ω,k), (37)

where we used the following relations:

ϵ = 1 + &e

k2λ2
D

+ χi&1&e,

χe = &e

k2λ2
D

+ χC&1&e, (38)

which follow from Eqs. (28), (29), and (36). Finally, we
substitute the expressions for j̃ [Eq. (34)], ũi [Eq. (35)], and Ẽ
[Eq. (37)] into the first equation of the system Eq. (16) for δñe

and write the Fourier-Laplace transformed electron density
fluctuation in terms of initial values δne(k,0),

δñe(ω,k) = i

ω

{
1 − k2λ2

De

χe(1 + χi)
ϵ

+ k2λ2
DeχC

}
δne(0).

(39)

The relation Eq. (39) for δñe(ω,k) has been derived from
the solutions to the kinetic equation in terms of Laplace
transformed quantities, which evolve in response to the initial
perturbation, δna(k,0). Using these quantities we have to
define the pair correlation function in the Fourier space
⟨δnaδnb⟩k,ω as follows:

⟨δnaδnb⟩k,ω = Re[⟨δña(k,ω)δnb(− k,0)⟩
+ ⟨δñb(k,ω)δna(− k,0)⟩]. (40)

For the initial density correlation function, we will as-
sume a simple equilibrium plasma result consistent with
the weakly coupled limit, Gab(k,0) = ⟨δna(k,0)δnb(− k,0)⟩ =
nbδab. This leads to the following expression for the Fourier-
Fourier transformed electron density correlation function for
the density fluctuations about the complete equilibrium state
(Te = Ti),

⟨δn2
e⟩ω,k = 2k2λ2

Dene

ω
Im

[
χe(1 + χi)

ϵ
− χC

]
. (41)

We can recover from Eq. (41) the well-known limit of the
collisionless plasma where the susceptibility functions χe,
χi [Eq. (28)] are evaluated using Eq. (31) as discussed at
the end of Sec. II and the coupling due to electron-ion
collisions is neglected, χC = 0. Validity of Eq. (41) in the
strong-collision limit will be discussed in Sec. IV where we
will compare Eq. (41) with the results of the fluctuation-
dissipation theorem [33] and the full set of classical hydro-
dynamic equations describing fluctuations. One can apply
the fluctuation-dissipation theorem because we have dealt so
far with complete plasma equilibrium conditions (Te = Ti).
Such calculations and experimental results were discussed in
Refs. [34] where dissipation was described in the strongly
collisional limit using Braginskii’s transport equations [15].

B. Fluctuations in two-temperature plasma

The same procedure of Sec. III A when it is formally applied
to nonequilibrium plasmas with two different background
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perturbation applied to the plasma. We will derive expressions
for the electron density of fluctuations δne and the density-
density correlation function Gab(ρ⃗,τ ) = ⟨δna(r⃗ ,t)δnb(r⃗ ′,t ′)⟩,
where ρ⃗ = r⃗ − r⃗ ′ and τ = t − t ′. Of particular interest will
be dynamic form factor S(k,ω) related to the Fourier-Fourier
transform of the electron density correlation function:

S(k,ω) =
〈
δn2

e

〉
k,ω

ne

= 1
ne

∫
d3ρ

∫
dτeiωτ − ik⃗·ρ⃗Gee(ρ⃗,τ ).

(32)

A. Fluctuations in equilibrium plasma

Consider first electron density fluctuations in a complete
equilibrium state of a plasma, where T = Te = Ti. In this
case, the density fluctuations can be calculated as a full system
response to the initial perturbations. On the other hand, in the
case of a nonequilibrium plasma with different temperatures of
electrons and ions, which is discussed in the next subsection,
will require separate treatment of each species in addition to
calculations of the self-consistent field from the full system
response. The initial perturbations of the plasma electron
density are introduced by taking the Laplace transformation of
the transport Eqs. (16). In particular,

∫ ∞

0
dteiωt ∂δne

∂t
= − iωδñe(k,ω) − δne(0), (33)

where δñe indicates the Lapalce transformed electron density
perturbation, δñe(k,ω) =

∫ +∞
0 dteiωtδne(k,t) and δne(0) ≡

δne(k,0) is the initial perturbation. It is helpful to distinguish
between Laplace transformed perturbations and the Fourier
transformed quantities that were used before. Using the
Laplace transformed Eqs. (16) one can eliminate temperature
perturbations from the expressions for the friction force and
the electric current:

j̃ = &e

[
− ie2ne

k2T
ωẼ + eneũi&1 + ie

k
δne(0)

]
,

R̃ie = − eneẼ + ik2T

eω

[
j̃&1 − eneũi&2 − ie

k
δne(0)

]
.

(34)

Combining Eqs. (25) and (34), we can express the average ion
flow velocity in terms of the electrostatic field and the initial
density perturbations,

ikũi = k2λ2
De

{
χi

eẼω

kT
− δne(0)

ne

χC

}
, (35)

where we have introduced a term, χC , that is proportional to
the electron-ion collision frequency. Here, e-i collisions are
responsible for coupling of electrons to ion evolution through
friction force and ion velocity terms in Eqs. (16),

χC = &i

k2λ2
Di

&1&e − 1
1 − g&i

(
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1&e − &2
)

≡ 1 + iωJ iN
N
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. (36)

Next, we can eliminate the electrostatic field Ẽ by means of
the Maxwell equation − iωẼ + 4π j̃ = 0,

Ẽ = kT

eωϵ(k,ω)
δne(0)

ne

χe(ω,k), (37)

where we used the following relations:

ϵ = 1 + &e

k2λ2
D

+ χi&1&e,

χe = &e

k2λ2
D

+ χC&1&e, (38)

which follow from Eqs. (28), (29), and (36). Finally, we
substitute the expressions for j̃ [Eq. (34)], ũi [Eq. (35)], and Ẽ
[Eq. (37)] into the first equation of the system Eq. (16) for δñe

and write the Fourier-Laplace transformed electron density
fluctuation in terms of initial values δne(k,0),

δñe(ω,k) = i

ω

{
1 − k2λ2

De

χe(1 + χi)
ϵ

+ k2λ2
DeχC

}
δne(0).

(39)

The relation Eq. (39) for δñe(ω,k) has been derived from
the solutions to the kinetic equation in terms of Laplace
transformed quantities, which evolve in response to the initial
perturbation, δna(k,0). Using these quantities we have to
define the pair correlation function in the Fourier space
⟨δnaδnb⟩k,ω as follows:

⟨δnaδnb⟩k,ω = Re[⟨δña(k,ω)δnb(− k,0)⟩
+ ⟨δñb(k,ω)δna(− k,0)⟩]. (40)

For the initial density correlation function, we will as-
sume a simple equilibrium plasma result consistent with
the weakly coupled limit, Gab(k,0) = ⟨δna(k,0)δnb(− k,0)⟩ =
nbδab. This leads to the following expression for the Fourier-
Fourier transformed electron density correlation function for
the density fluctuations about the complete equilibrium state
(Te = Ti),

⟨δn2
e⟩ω,k = 2k2λ2

Dene

ω
Im

[
χe(1 + χi)

ϵ
− χC

]
. (41)

We can recover from Eq. (41) the well-known limit of the
collisionless plasma where the susceptibility functions χe,
χi [Eq. (28)] are evaluated using Eq. (31) as discussed at
the end of Sec. II and the coupling due to electron-ion
collisions is neglected, χC = 0. Validity of Eq. (41) in the
strong-collision limit will be discussed in Sec. IV where we
will compare Eq. (41) with the results of the fluctuation-
dissipation theorem [33] and the full set of classical hydro-
dynamic equations describing fluctuations. One can apply
the fluctuation-dissipation theorem because we have dealt so
far with complete plasma equilibrium conditions (Te = Ti).
Such calculations and experimental results were discussed in
Refs. [34] where dissipation was described in the strongly
collisional limit using Braginskii’s transport equations [15].

B. Fluctuations in two-temperature plasma

The same procedure of Sec. III A when it is formally applied
to nonequilibrium plasmas with two different background
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Laser pulses of finite temporal and spatial bandwidth are used in ICF experiments and 
employed as TS probes. The effect of the laser pulse incoherence on the TS cross-section 
has been quantified and it leads to broadening of the scattering spectra. Such pulses can 
have also direct effect of the level of ion acoustic fluctuations. 
Density fluctuations
driven by the 
ponderomotive force:

plasma fluctuations. In the next sections the detailed theory
of laser driven fluctuations is presented. It includes effects of
electron–electron and electron–ion collisions, IB heating,
and PF effects in the entire range of plasma collisionality. In
Sec. IV we present closure relations for plasma hydrody-
namic equations, while Sec. V describes expressions for
electron fluxes and transport coefficients defined by IB and
PF laser–plasma interactions. A new set of closed hydrody-
namic equations is also derived in Sec. V including the equa-
tion for vortical component of the plasma velocity and self-
consistent magnetic field. In Sec. VI we derive coupling
coefficients relating IB and PF source terms to plasma per-
turbations. Section VII is devoted to calculations of expres-
sions for density, temperature, magnetic field, and vortical
velocity fluctuations of a plasma using the spectral correla-
tion function of the laser intensity introduced in Sec. III. In
Sec. VIII we discuss the Thomson scattering of a probe laser
beam from laser driven density fluctuations. Finally, Sec. IX
contains conclusions of our studies.

II. ENHANCED FLUCTUATIONS IN LASER DRIVEN
PLASMAS

The simple physical model of nonthermal fluctuations
produced by a randomized laser beam assumes plasma
quasineutrality, neglects all particle collisions and plasma
heating, and introduces a source term defined by the pon-
deromotive force !"I , where I is the laser intensity. The
model describes linear response of density perturbations #n
to the ponderomotive force

$2#n
$t2 !2%a

$#n
$t "cs

2&#n#"
cs
2

2
ne
ncTe

&I , '1(

where Te is the electron temperature, cs is the ion acoustic
velocity, nc#)0

2me/4*e2 is the critical density for a laser
light with the frequency )0, and %a is the ion acoustic damp-
ing. The damping %a is introduced in Eq. '1(as a constant
coefficient; however, in more realistic models it is an integral
operator in space and time. The ponderomotive force term on
the right hand side of Eq. '1(is given by the collisionless
plasma expression.25,26

Consider a laser beam which is characterized by a ho-
mogeneous and stationary statistically averaged intensity
+I,#I0 and exhibits small scale fluctuations 'hot spots(char-
acterized by the spectral density +I2,) ,k . In response to the
inhomogeneous 'randomized(part of laser radiation Eq. '1(
predicts density fluctuations which are described by the spec-
tral density

! #n2

ne
2 "

) ,k
## 1/2

')/kcs(2!2i%a)/kcs
2"1#2 +I2,) ,k

nc
2Te

2 . '2(

In order to estimate the maximum amplitude of density fluc-
tuations '2(we first introduce a result of Sec. III, mainly the
maximum of intensity fluctuations, max+I2,) ,k-I0

2, corre-
sponds to the value of ) of the order of the inverse correla-
tion time and to k of the order of the inverse hot spot size. On
the other hand, the plasma response to the ISI laser beam,
described by the resonant term in Eq. '2(, produces maxi-
mum density fluctuations at )-kcs . By including the ion

acoustic resonance we can estimate frequency integrated
density fluctuations as +#ne

2,1/2/ne-(kcs /%a)1/2(I0 /ncTe),
where we have assumed a laser pump bandwidth to be larger
or comparable with the ion acoustic frequency, kcs . For an
ion acoustic damping defined by the electron Landau damp-
ing the level of fluctuations is +#ne

2,1/2/ne
-(mi /me)1/4(I0 /ncTe). This is a rather large value, particu-
larly when the smoothed laser beam displays intensity modu-
lations, which are comparable to mean laser intensity. The
time needed to reach this level of fluctuations is on the order
of ion acoustic damping time, -1/%a .

Our simple discussion does not take into account particle
collisions which could be important for small scale laser
fluctuations. Indeed, the typical size a0 of a hot spot in the
randomized laser beam is a few laser wavelengths. There-
fore, resonantly excited ion acoustic perturbations with k
-a0

"1 correspond to k.ei where .ei is the electron–ion
mean free path, which is a relatively small number charac-
terizing a weakly collisional plasma. For example, one can
estimate that for 0.35 /m laser light in a plasma with Z
#10, ne#0.1nc and Te#2 keV this parameter is 05 for
a001 /m. The theory15,18 of a nonlocal electron transport
predicts dramatic changes in plasma response for k.ei$10
as compared to collisionless results.

In this article we will generalize the simple theory of Eq.
'2(to account for plasma heating and particle collisionality
effects. Particle collisions have two important effects on the
fluctuation levels: they change ion acoustic damping in the
expression '2(and the coupling coefficient 12 in the numerator
of Eq. '2(which corresponds to the usual ponderomotive
interaction. In collisional plasmas a ponderomotive force
term differs from the standard expression 'cf. Refs. 25 and
26(. This has already been demonstrated in Ref. 18. IB heat-
ing as well as nonlocal heat transport also change the cou-
pling coefficient. However, the present theory demonstrates
that the form of density fluctuations is the same as '2(if one
replaces the coupling coefficient 1

2 by the new Ak term
'which is derived below(and the correct expressions for the
ion acoustic damping and dispersion are used in the denomi-
nator. Together with the potential perturbations the vortical
ones can also be excited by a randomized laser beam due to
the nonpotential component of the electromagnetic stress
tensor. An important characteristic of vortical perturbations
is their nonzero amplitudes due to the plasma response to
intensity fluctuations in the regime of a nonlocal transport.
These perturbations vanish in collisionless and strongly col-
lisional limits.

III. LASER INTENSITY CORRELATION FUNCTION

We assume a translational invariance of a laser light in a
plasma, i.e., the scale length of an average laser intensity
variation is much longer than the correlation length. Also,
the characteristic time of an average intensity variation is
longer than the relaxation time of plasma modes, which is on
the order of an ion acoustic damping time. Under these con-
ditions the laser intensity correlation function satisfies the
following relation:22

+I't ,r(I't!,r!(,# $CEE*'t"t!,r"r!($ 2, '3(
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Laser with hot spots and time smoothing – spectral density !" #,% produces density
fluctuations such that the spectral density reads:

plasma fluctuations. In the next sections the detailed theory
of laser driven fluctuations is presented. It includes effects of
electron–electron and electron–ion collisions, IB heating,
and PF effects in the entire range of plasma collisionality. In
Sec. IV we present closure relations for plasma hydrody-
namic equations, while Sec. V describes expressions for
electron fluxes and transport coefficients defined by IB and
PF laser–plasma interactions. A new set of closed hydrody-
namic equations is also derived in Sec. V including the equa-
tion for vortical component of the plasma velocity and self-
consistent magnetic field. In Sec. VI we derive coupling
coefficients relating IB and PF source terms to plasma per-
turbations. Section VII is devoted to calculations of expres-
sions for density, temperature, magnetic field, and vortical
velocity fluctuations of a plasma using the spectral correla-
tion function of the laser intensity introduced in Sec. III. In
Sec. VIII we discuss the Thomson scattering of a probe laser
beam from laser driven density fluctuations. Finally, Sec. IX
contains conclusions of our studies.

II. ENHANCED FLUCTUATIONS IN LASER DRIVEN
PLASMAS

The simple physical model of nonthermal fluctuations
produced by a randomized laser beam assumes plasma
quasineutrality, neglects all particle collisions and plasma
heating, and introduces a source term defined by the pon-
deromotive force !"I , where I is the laser intensity. The
model describes linear response of density perturbations #n
to the ponderomotive force
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where Te is the electron temperature, cs is the ion acoustic
velocity, nc#)0

2me/4*e2 is the critical density for a laser
light with the frequency )0, and %a is the ion acoustic damp-
ing. The damping %a is introduced in Eq. '1(as a constant
coefficient; however, in more realistic models it is an integral
operator in space and time. The ponderomotive force term on
the right hand side of Eq. '1(is given by the collisionless
plasma expression.25,26

Consider a laser beam which is characterized by a ho-
mogeneous and stationary statistically averaged intensity
+I,#I0 and exhibits small scale fluctuations 'hot spots(char-
acterized by the spectral density +I2,) ,k . In response to the
inhomogeneous 'randomized(part of laser radiation Eq. '1(
predicts density fluctuations which are described by the spec-
tral density
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In order to estimate the maximum amplitude of density fluc-
tuations '2(we first introduce a result of Sec. III, mainly the
maximum of intensity fluctuations, max+I2,) ,k-I0

2, corre-
sponds to the value of ) of the order of the inverse correla-
tion time and to k of the order of the inverse hot spot size. On
the other hand, the plasma response to the ISI laser beam,
described by the resonant term in Eq. '2(, produces maxi-
mum density fluctuations at )-kcs . By including the ion

acoustic resonance we can estimate frequency integrated
density fluctuations as +#ne

2,1/2/ne-(kcs /%a)1/2(I0 /ncTe),
where we have assumed a laser pump bandwidth to be larger
or comparable with the ion acoustic frequency, kcs . For an
ion acoustic damping defined by the electron Landau damp-
ing the level of fluctuations is +#ne

2,1/2/ne
-(mi /me)1/4(I0 /ncTe). This is a rather large value, particu-
larly when the smoothed laser beam displays intensity modu-
lations, which are comparable to mean laser intensity. The
time needed to reach this level of fluctuations is on the order
of ion acoustic damping time, -1/%a .

Our simple discussion does not take into account particle
collisions which could be important for small scale laser
fluctuations. Indeed, the typical size a0 of a hot spot in the
randomized laser beam is a few laser wavelengths. There-
fore, resonantly excited ion acoustic perturbations with k
-a0

"1 correspond to k.ei where .ei is the electron–ion
mean free path, which is a relatively small number charac-
terizing a weakly collisional plasma. For example, one can
estimate that for 0.35 /m laser light in a plasma with Z
#10, ne#0.1nc and Te#2 keV this parameter is 05 for
a001 /m. The theory15,18 of a nonlocal electron transport
predicts dramatic changes in plasma response for k.ei$10
as compared to collisionless results.

In this article we will generalize the simple theory of Eq.
'2(to account for plasma heating and particle collisionality
effects. Particle collisions have two important effects on the
fluctuation levels: they change ion acoustic damping in the
expression '2(and the coupling coefficient 12 in the numerator
of Eq. '2(which corresponds to the usual ponderomotive
interaction. In collisional plasmas a ponderomotive force
term differs from the standard expression 'cf. Refs. 25 and
26(. This has already been demonstrated in Ref. 18. IB heat-
ing as well as nonlocal heat transport also change the cou-
pling coefficient. However, the present theory demonstrates
that the form of density fluctuations is the same as '2(if one
replaces the coupling coefficient 1

2 by the new Ak term
'which is derived below(and the correct expressions for the
ion acoustic damping and dispersion are used in the denomi-
nator. Together with the potential perturbations the vortical
ones can also be excited by a randomized laser beam due to
the nonpotential component of the electromagnetic stress
tensor. An important characteristic of vortical perturbations
is their nonzero amplitudes due to the plasma response to
intensity fluctuations in the regime of a nonlocal transport.
These perturbations vanish in collisionless and strongly col-
lisional limits.

III. LASER INTENSITY CORRELATION FUNCTION

We assume a translational invariance of a laser light in a
plasma, i.e., the scale length of an average laser intensity
variation is much longer than the correlation length. Also,
the characteristic time of an average intensity variation is
longer than the relaxation time of plasma modes, which is on
the order of an ion acoustic damping time. Under these con-
ditions the laser intensity correlation function satisfies the
following relation:22
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plasma fluctuations. In the next sections the detailed theory
of laser driven fluctuations is presented. It includes effects of
electron–electron and electron–ion collisions, IB heating,
and PF effects in the entire range of plasma collisionality. In
Sec. IV we present closure relations for plasma hydrody-
namic equations, while Sec. V describes expressions for
electron fluxes and transport coefficients defined by IB and
PF laser–plasma interactions. A new set of closed hydrody-
namic equations is also derived in Sec. V including the equa-
tion for vortical component of the plasma velocity and self-
consistent magnetic field. In Sec. VI we derive coupling
coefficients relating IB and PF source terms to plasma per-
turbations. Section VII is devoted to calculations of expres-
sions for density, temperature, magnetic field, and vortical
velocity fluctuations of a plasma using the spectral correla-
tion function of the laser intensity introduced in Sec. III. In
Sec. VIII we discuss the Thomson scattering of a probe laser
beam from laser driven density fluctuations. Finally, Sec. IX
contains conclusions of our studies.

II. ENHANCED FLUCTUATIONS IN LASER DRIVEN
PLASMAS

The simple physical model of nonthermal fluctuations
produced by a randomized laser beam assumes plasma
quasineutrality, neglects all particle collisions and plasma
heating, and introduces a source term defined by the pon-
deromotive force !"I , where I is the laser intensity. The
model describes linear response of density perturbations #n
to the ponderomotive force
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where Te is the electron temperature, cs is the ion acoustic
velocity, nc#)0

2me/4*e2 is the critical density for a laser
light with the frequency )0, and %a is the ion acoustic damp-
ing. The damping %a is introduced in Eq. '1(as a constant
coefficient; however, in more realistic models it is an integral
operator in space and time. The ponderomotive force term on
the right hand side of Eq. '1(is given by the collisionless
plasma expression.25,26

Consider a laser beam which is characterized by a ho-
mogeneous and stationary statistically averaged intensity
+I,#I0 and exhibits small scale fluctuations 'hot spots(char-
acterized by the spectral density +I2,) ,k . In response to the
inhomogeneous 'randomized(part of laser radiation Eq. '1(
predicts density fluctuations which are described by the spec-
tral density
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In order to estimate the maximum amplitude of density fluc-
tuations '2(we first introduce a result of Sec. III, mainly the
maximum of intensity fluctuations, max+I2,) ,k-I0

2, corre-
sponds to the value of ) of the order of the inverse correla-
tion time and to k of the order of the inverse hot spot size. On
the other hand, the plasma response to the ISI laser beam,
described by the resonant term in Eq. '2(, produces maxi-
mum density fluctuations at )-kcs . By including the ion

acoustic resonance we can estimate frequency integrated
density fluctuations as +#ne

2,1/2/ne-(kcs /%a)1/2(I0 /ncTe),
where we have assumed a laser pump bandwidth to be larger
or comparable with the ion acoustic frequency, kcs . For an
ion acoustic damping defined by the electron Landau damp-
ing the level of fluctuations is +#ne

2,1/2/ne
-(mi /me)1/4(I0 /ncTe). This is a rather large value, particu-
larly when the smoothed laser beam displays intensity modu-
lations, which are comparable to mean laser intensity. The
time needed to reach this level of fluctuations is on the order
of ion acoustic damping time, -1/%a .

Our simple discussion does not take into account particle
collisions which could be important for small scale laser
fluctuations. Indeed, the typical size a0 of a hot spot in the
randomized laser beam is a few laser wavelengths. There-
fore, resonantly excited ion acoustic perturbations with k
-a0

"1 correspond to k.ei where .ei is the electron–ion
mean free path, which is a relatively small number charac-
terizing a weakly collisional plasma. For example, one can
estimate that for 0.35 /m laser light in a plasma with Z
#10, ne#0.1nc and Te#2 keV this parameter is 05 for
a001 /m. The theory15,18 of a nonlocal electron transport
predicts dramatic changes in plasma response for k.ei$10
as compared to collisionless results.

In this article we will generalize the simple theory of Eq.
'2(to account for plasma heating and particle collisionality
effects. Particle collisions have two important effects on the
fluctuation levels: they change ion acoustic damping in the
expression '2(and the coupling coefficient 12 in the numerator
of Eq. '2(which corresponds to the usual ponderomotive
interaction. In collisional plasmas a ponderomotive force
term differs from the standard expression 'cf. Refs. 25 and
26(. This has already been demonstrated in Ref. 18. IB heat-
ing as well as nonlocal heat transport also change the cou-
pling coefficient. However, the present theory demonstrates
that the form of density fluctuations is the same as '2(if one
replaces the coupling coefficient 1

2 by the new Ak term
'which is derived below(and the correct expressions for the
ion acoustic damping and dispersion are used in the denomi-
nator. Together with the potential perturbations the vortical
ones can also be excited by a randomized laser beam due to
the nonpotential component of the electromagnetic stress
tensor. An important characteristic of vortical perturbations
is their nonzero amplitudes due to the plasma response to
intensity fluctuations in the regime of a nonlocal transport.
These perturbations vanish in collisionless and strongly col-
lisional limits.

III. LASER INTENSITY CORRELATION FUNCTION

We assume a translational invariance of a laser light in a
plasma, i.e., the scale length of an average laser intensity
variation is much longer than the correlation length. Also,
the characteristic time of an average intensity variation is
longer than the relaxation time of plasma modes, which is on
the order of an ion acoustic damping time. Under these con-
ditions the laser intensity correlation function satisfies the
following relation:22
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where the laser bandwidth ≥ '()
For electron Landau damping one has level of fluctuations 

plasma fluctuations. In the next sections the detailed theory
of laser driven fluctuations is presented. It includes effects of
electron–electron and electron–ion collisions, IB heating,
and PF effects in the entire range of plasma collisionality. In
Sec. IV we present closure relations for plasma hydrody-
namic equations, while Sec. V describes expressions for
electron fluxes and transport coefficients defined by IB and
PF laser–plasma interactions. A new set of closed hydrody-
namic equations is also derived in Sec. V including the equa-
tion for vortical component of the plasma velocity and self-
consistent magnetic field. In Sec. VI we derive coupling
coefficients relating IB and PF source terms to plasma per-
turbations. Section VII is devoted to calculations of expres-
sions for density, temperature, magnetic field, and vortical
velocity fluctuations of a plasma using the spectral correla-
tion function of the laser intensity introduced in Sec. III. In
Sec. VIII we discuss the Thomson scattering of a probe laser
beam from laser driven density fluctuations. Finally, Sec. IX
contains conclusions of our studies.

II. ENHANCED FLUCTUATIONS IN LASER DRIVEN
PLASMAS

The simple physical model of nonthermal fluctuations
produced by a randomized laser beam assumes plasma
quasineutrality, neglects all particle collisions and plasma
heating, and introduces a source term defined by the pon-
deromotive force !"I , where I is the laser intensity. The
model describes linear response of density perturbations #n
to the ponderomotive force
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where Te is the electron temperature, cs is the ion acoustic
velocity, nc#)0

2me/4*e2 is the critical density for a laser
light with the frequency )0, and %a is the ion acoustic damp-
ing. The damping %a is introduced in Eq. '1(as a constant
coefficient; however, in more realistic models it is an integral
operator in space and time. The ponderomotive force term on
the right hand side of Eq. '1(is given by the collisionless
plasma expression.25,26

Consider a laser beam which is characterized by a ho-
mogeneous and stationary statistically averaged intensity
+I,#I0 and exhibits small scale fluctuations 'hot spots(char-
acterized by the spectral density +I2,) ,k . In response to the
inhomogeneous 'randomized(part of laser radiation Eq. '1(
predicts density fluctuations which are described by the spec-
tral density
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In order to estimate the maximum amplitude of density fluc-
tuations '2(we first introduce a result of Sec. III, mainly the
maximum of intensity fluctuations, max+I2,) ,k-I0

2, corre-
sponds to the value of ) of the order of the inverse correla-
tion time and to k of the order of the inverse hot spot size. On
the other hand, the plasma response to the ISI laser beam,
described by the resonant term in Eq. '2(, produces maxi-
mum density fluctuations at )-kcs . By including the ion

acoustic resonance we can estimate frequency integrated
density fluctuations as +#ne

2,1/2/ne-(kcs /%a)1/2(I0 /ncTe),
where we have assumed a laser pump bandwidth to be larger
or comparable with the ion acoustic frequency, kcs . For an
ion acoustic damping defined by the electron Landau damp-
ing the level of fluctuations is +#ne

2,1/2/ne
-(mi /me)1/4(I0 /ncTe). This is a rather large value, particu-
larly when the smoothed laser beam displays intensity modu-
lations, which are comparable to mean laser intensity. The
time needed to reach this level of fluctuations is on the order
of ion acoustic damping time, -1/%a .

Our simple discussion does not take into account particle
collisions which could be important for small scale laser
fluctuations. Indeed, the typical size a0 of a hot spot in the
randomized laser beam is a few laser wavelengths. There-
fore, resonantly excited ion acoustic perturbations with k
-a0

"1 correspond to k.ei where .ei is the electron–ion
mean free path, which is a relatively small number charac-
terizing a weakly collisional plasma. For example, one can
estimate that for 0.35 /m laser light in a plasma with Z
#10, ne#0.1nc and Te#2 keV this parameter is 05 for
a001 /m. The theory15,18 of a nonlocal electron transport
predicts dramatic changes in plasma response for k.ei$10
as compared to collisionless results.

In this article we will generalize the simple theory of Eq.
'2(to account for plasma heating and particle collisionality
effects. Particle collisions have two important effects on the
fluctuation levels: they change ion acoustic damping in the
expression '2(and the coupling coefficient 12 in the numerator
of Eq. '2(which corresponds to the usual ponderomotive
interaction. In collisional plasmas a ponderomotive force
term differs from the standard expression 'cf. Refs. 25 and
26(. This has already been demonstrated in Ref. 18. IB heat-
ing as well as nonlocal heat transport also change the cou-
pling coefficient. However, the present theory demonstrates
that the form of density fluctuations is the same as '2(if one
replaces the coupling coefficient 1

2 by the new Ak term
'which is derived below(and the correct expressions for the
ion acoustic damping and dispersion are used in the denomi-
nator. Together with the potential perturbations the vortical
ones can also be excited by a randomized laser beam due to
the nonpotential component of the electromagnetic stress
tensor. An important characteristic of vortical perturbations
is their nonzero amplitudes due to the plasma response to
intensity fluctuations in the regime of a nonlocal transport.
These perturbations vanish in collisionless and strongly col-
lisional limits.

III. LASER INTENSITY CORRELATION FUNCTION

We assume a translational invariance of a laser light in a
plasma, i.e., the scale length of an average laser intensity
variation is much longer than the correlation length. Also,
the characteristic time of an average intensity variation is
longer than the relaxation time of plasma modes, which is on
the order of an ion acoustic damping time. Under these con-
ditions the laser intensity correlation function satisfies the
following relation:22
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The average laser intensity 

where CEE* is the laser electric field correlation function.
The latter depends on the particular way of the laser field
generation and the choice of a smoothing method. As a typi-
cal example of practical interest we consider the Gaussian
correlation function
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which describes reasonably well statistical properties of laser
hot spots produced by RPP.22 Here %0 is the laser correlation
time "it could be as small as a few psec#, a0 is the minimum
hot spot radius "typically it is a few laser wavelengths in
length#, LR!k0a0

2 is the Rayleigh length or the longitudinal
correlation length "it varies from tens to hundreds of laser
wavelengths#, and v g!k0c2/&0'c is the laser wave group
velocity, where k0 is the wave number of a laser light.

Performing a Fourier transform of the laser intensity cor-
relation function "3# we obtain a spectral function:
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where )-functions reflect the stationary and homogeneous
nature of laser intensity fluctuations, i.e., the average laser
intensity, I0, changes slow in space and/or in time. The nor-
malization of the spectral correlation function is standard:
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The final expression for the spectral correlation function in
our example reads
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where VHS!2(a0
2LR is the characteristic single hot spot

volume. In the linear theory of plasma response to random-
ized laser beams laser light statistical properties directly de-
fine characteristic scales of driven plasma fluctuations: &%0
%2, k!a0%2, and kz /k!%a0 /LR&1. The intensity distri-
bution "6# approximates most closely an ISI optically
smoothed laser beam.

IV. BASIC EQUATIONS

The starting point for a general theory of laser driven
plasma fluctuations is a set of linearized quasi-
hydrodynamical equations18 for spatial Fourier components
of fluctuations of the following physical quantities: electron
and ion densities )ne and )ni , electron and ion temperatures
)Te and )Ti , and electron and ion fluid velocities ue and ui :
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Notations and definitions are standard: +ei
T

!4!2(e2ei
2ni-/3Te

3/2!me denotes the electron–ion colli-
sion frequency, + i!4!(ei

4ni-/3Ti
3/2!mi is the ion–ion col-

lision frequency, v Ti(e)!!Ti(e) /mi(e) is the ion "electron#
thermal velocity, Ik(t) is the spatial Fourier component of
the laser intensity, and Rie is the ion–electron friction force.
We assume electrical quasi-neutrality, ne!Zni , and Max-
wellian distribution functions for electrons and ions in the
background plasma. The latter assumption requires a rela-
tively small average laser intensity ZI0 /ncTe&1.

The electron and ion fluid velocities are related through
the electric current, j!ene(ui#ue), and the electron heat
flux qe . Closure relations for j and qe are discussed in the
next section. Nonlocal ion transport processes are repre-
sented by the ion viscosity ,̂ i which has been obtained in 21
moment Grad approximation.17 It is an operator in a time
domain and its Fourier component reads
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2 . "8#

This expression provides a good approximation for the arbi-
trary ratio between the frequency & and the ion–ion collision
frequency + i . We neglected in Eqs. "7# an ion thermal con-
ductivity, ion collisionless damping and the electron–ion en-
ergy exchange by considering relatively fast processes: &
'.kv Ti ,+ei

T me /mi/and high Z plasma, Z'1.
The fluid Eqs. "7# are supplemented by Maxwell’s equa-

tions

ik•E!4(e"Z)ni#)ne#, *B/*t!#ic0k$E1,
"9#ic0k$B1!4(j ,

where the displacement current is neglected. The latter is
valid for slow electron motions with characteristic velocities
which are much smaller as compared to the velocity of light.

V. HYDRODYNAMIC EQUATIONS AND CLOSURE
RELATIONS

To obtain closure relations for nonlocal hydrodynamics
one has to express electron fluxes in terms of ‘‘effective
forces:’’ electric field E, thermal pressure force ik(Te)ne
"ne)Te), temperature gradient ik)Te , plasma "ion# flow
velocity ui , and laser intensity gradient ikIk . The following
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where CEE* is the laser electric field correlation function.
The latter depends on the particular way of the laser field
generation and the choice of a smoothing method. As a typi-
cal example of practical interest we consider the Gaussian
correlation function
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which describes reasonably well statistical properties of laser
hot spots produced by RPP.22 Here %0 is the laser correlation
time "it could be as small as a few psec#, a0 is the minimum
hot spot radius "typically it is a few laser wavelengths in
length#, LR!k0a0

2 is the Rayleigh length or the longitudinal
correlation length "it varies from tens to hundreds of laser
wavelengths#, and v g!k0c2/&0'c is the laser wave group
velocity, where k0 is the wave number of a laser light.

Performing a Fourier transform of the laser intensity cor-
relation function "3# we obtain a spectral function:
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where )-functions reflect the stationary and homogeneous
nature of laser intensity fluctuations, i.e., the average laser
intensity, I0, changes slow in space and/or in time. The nor-
malization of the spectral correlation function is standard:
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The final expression for the spectral correlation function in
our example reads
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where VHS!2(a0
2LR is the characteristic single hot spot

volume. In the linear theory of plasma response to random-
ized laser beams laser light statistical properties directly de-
fine characteristic scales of driven plasma fluctuations: &%0
%2, k!a0%2, and kz /k!%a0 /LR&1. The intensity distri-
bution "6# approximates most closely an ISI optically
smoothed laser beam.

IV. BASIC EQUATIONS

The starting point for a general theory of laser driven
plasma fluctuations is a set of linearized quasi-
hydrodynamical equations18 for spatial Fourier components
of fluctuations of the following physical quantities: electron
and ion densities )ne and )ni , electron and ion temperatures
)Te and )Ti , and electron and ion fluid velocities ue and ui :
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Notations and definitions are standard: +ei
T

!4!2(e2ei
2ni-/3Te

3/2!me denotes the electron–ion colli-
sion frequency, + i!4!(ei

4ni-/3Ti
3/2!mi is the ion–ion col-

lision frequency, v Ti(e)!!Ti(e) /mi(e) is the ion "electron#
thermal velocity, Ik(t) is the spatial Fourier component of
the laser intensity, and Rie is the ion–electron friction force.
We assume electrical quasi-neutrality, ne!Zni , and Max-
wellian distribution functions for electrons and ions in the
background plasma. The latter assumption requires a rela-
tively small average laser intensity ZI0 /ncTe&1.

The electron and ion fluid velocities are related through
the electric current, j!ene(ui#ue), and the electron heat
flux qe . Closure relations for j and qe are discussed in the
next section. Nonlocal ion transport processes are repre-
sented by the ion viscosity ,̂ i which has been obtained in 21
moment Grad approximation.17 It is an operator in a time
domain and its Fourier component reads
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This expression provides a good approximation for the arbi-
trary ratio between the frequency & and the ion–ion collision
frequency + i . We neglected in Eqs. "7# an ion thermal con-
ductivity, ion collisionless damping and the electron–ion en-
ergy exchange by considering relatively fast processes: &
'.kv Ti ,+ei

T me /mi/and high Z plasma, Z'1.
The fluid Eqs. "7# are supplemented by Maxwell’s equa-

tions
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where the displacement current is neglected. The latter is
valid for slow electron motions with characteristic velocities
which are much smaller as compared to the velocity of light.

V. HYDRODYNAMIC EQUATIONS AND CLOSURE
RELATIONS

To obtain closure relations for nonlocal hydrodynamics
one has to express electron fluxes in terms of ‘‘effective
forces:’’ electric field E, thermal pressure force ik(Te)ne
"ne)Te), temperature gradient ik)Te , plasma "ion# flow
velocity ui , and laser intensity gradient ikIk . The following
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where CEE* is the laser electric field correlation function.
The latter depends on the particular way of the laser field
generation and the choice of a smoothing method. As a typi-
cal example of practical interest we consider the Gaussian
correlation function

!I" t ,r#I" t!,r!#$!
I0
2

1""z#z!#2/LR
2

$exp!#
"r!#r!! #2

a0
2"1""z#z!#2/LR

2 #

#
" t#z/v g#t!"z!/v g#2

%0
2 " , "4#

which describes reasonably well statistical properties of laser
hot spots produced by RPP.22 Here %0 is the laser correlation
time "it could be as small as a few psec#, a0 is the minimum
hot spot radius "typically it is a few laser wavelengths in
length#, LR!k0a0

2 is the Rayleigh length or the longitudinal
correlation length "it varies from tens to hundreds of laser
wavelengths#, and v g!k0c2/&0'c is the laser wave group
velocity, where k0 is the wave number of a laser light.

Performing a Fourier transform of the laser intensity cor-
relation function "3# we obtain a spectral function:
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where )-functions reflect the stationary and homogeneous
nature of laser intensity fluctuations, i.e., the average laser
intensity, I0, changes slow in space and/or in time. The nor-
malization of the spectral correlation function is standard:
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where VHS!2(a0
2LR is the characteristic single hot spot

volume. In the linear theory of plasma response to random-
ized laser beams laser light statistical properties directly de-
fine characteristic scales of driven plasma fluctuations: &%0
%2, k!a0%2, and kz /k!%a0 /LR&1. The intensity distri-
bution "6# approximates most closely an ISI optically
smoothed laser beam.

IV. BASIC EQUATIONS

The starting point for a general theory of laser driven
plasma fluctuations is a set of linearized quasi-
hydrodynamical equations18 for spatial Fourier components
of fluctuations of the following physical quantities: electron
and ion densities )ne and )ni , electron and ion temperatures
)Te and )Ti , and electron and ion fluid velocities ue and ui :
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Notations and definitions are standard: +ei
T

!4!2(e2ei
2ni-/3Te

3/2!me denotes the electron–ion colli-
sion frequency, + i!4!(ei

4ni-/3Ti
3/2!mi is the ion–ion col-

lision frequency, v Ti(e)!!Ti(e) /mi(e) is the ion "electron#
thermal velocity, Ik(t) is the spatial Fourier component of
the laser intensity, and Rie is the ion–electron friction force.
We assume electrical quasi-neutrality, ne!Zni , and Max-
wellian distribution functions for electrons and ions in the
background plasma. The latter assumption requires a rela-
tively small average laser intensity ZI0 /ncTe&1.

The electron and ion fluid velocities are related through
the electric current, j!ene(ui#ue), and the electron heat
flux qe . Closure relations for j and qe are discussed in the
next section. Nonlocal ion transport processes are repre-
sented by the ion viscosity ,̂ i which has been obtained in 21
moment Grad approximation.17 It is an operator in a time
domain and its Fourier component reads

, i!
i+ i"&"1.46i+ i#

"&"1.20i+ i#"&"1.46i+ i#"0.23+ i
2 . "8#

This expression provides a good approximation for the arbi-
trary ratio between the frequency & and the ion–ion collision
frequency + i . We neglected in Eqs. "7# an ion thermal con-
ductivity, ion collisionless damping and the electron–ion en-
ergy exchange by considering relatively fast processes: &
'.kv Ti ,+ei

T me /mi/and high Z plasma, Z'1.
The fluid Eqs. "7# are supplemented by Maxwell’s equa-

tions

ik•E!4(e"Z)ni#)ne#, *B/*t!#ic0k$E1,
"9#ic0k$B1!4(j ,

where the displacement current is neglected. The latter is
valid for slow electron motions with characteristic velocities
which are much smaller as compared to the velocity of light.

V. HYDRODYNAMIC EQUATIONS AND CLOSURE
RELATIONS

To obtain closure relations for nonlocal hydrodynamics
one has to express electron fluxes in terms of ‘‘effective
forces:’’ electric field E, thermal pressure force ik(Te)ne
"ne)Te), temperature gradient ik)Te , plasma "ion# flow
velocity ui , and laser intensity gradient ikIk . The following
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For parameters of experiment: ne=7 1019 cm-3, Te=850 eV, Ti=190 eV, Z=15 collisions are 
important: λei=13 µm, *++ = 1.56 1001µm, i.e. on the scale of speckle collisions will 
change (enhance) the level of density fluctuations. Use nonlocal hydrodynamics. (Brantov
et al. Phys. Plasmas 6, 3002 (1999)).
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2 !1, where IB heating dominates, Ak
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2 #2.54Z . In the weakly collisional limit, k!ei

$Z%1/2, the coupling coefficient reads
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%4/7. #22$

For example, one can see that Ak"1 for k!ei%Z5/4. For
shorter wavelengths the IB contribution is small and the pon-
deromotive term dominates, i.e., Ak!1/2.

Relations for vortical spectral components follow from
Eqs. #16$and #17$:
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where (pe(i) is the electron #ion$plasma frequency and !
"eB/mec is the electron cyclotron frequency. Both the mag-
netic field and the vortex flow are generated by the electro-
magnetic stress tensor driven by laser radiation. The effi-
ciency of their generation strongly depends on the
characteristic frequency #laser pulse correlation time, .0
%(%1) or more exactly on the parameter (.s
/(v Te /c)2((pe /)ei

T )3((/(pe) where .s is characteristic
electron skin time. Figure 3 shows plots of "AB ,k"and "AW ,k"
as functions of the collisionality parameter for different val-
ues of (. and Z. Notice that efficiency of the generation of
magnetic fluctuations achieves its maximum for the interme-
diate collisionality, k!ei'1, while the efficiency of the vor-
tical flow excitation increases as one moves into the colli-
sionless limit.

VII. PLASMA CORRELATION FUNCTIONS

From the equations #18$and #23$, which relate velocity,
density, temperature, magnetic field, and vorticity perturba-

tions to laser intensity, one finds the following expressions
for the spectral densities of plasma correlation functions in
terms of laser intensity fluctuation spectral densities, 0I21( ,k
#6$,
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The correlation functions for vortical components could be
conveniently written as follows:
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These expressions clearly show the dependence of plasma
correlation functions on the coupling coefficients Ak , AB ,k ,
and AW ,k .

Due to properties of the laser intensity correlation func-
tion, 0I21( ,k #6$, the fluctuation spectra are very narrow in
the z direction (kz(k!) and have a simple Gaussian shape.
Investigating general properties of the fluctuations we first
integrate the spectra with respect to kz (5dkz/2+) and con-
sider their properties in (k! ,()-plane. Spectra of potential
perturbations are azimuthally symmetric and they have

FIG. 2. Dependence of the coupling coefficient Ak on the collisionality
parameter k!ei for Z"8 and 64 #solid lines$. Dashed-dotted lines corre-
spond to the strongly collisional limit results.

FIG. 3. Dependence of the coupling coefficients "AB ,k"and "AW ,k"on the
collisionality parameter k!ei . Solid and dashed lines correspond to (.s
"10 and 100, respectively. Gray lines indicate the strongly collisional limit
results.
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hydrodynamical equations are not applicable for vortical
plasma motion in the collisionless regime because they have
been derived without taking into account second order laser–
plasma coupling terms !"0

!2. This approximation neglects a
magnetization current27 which is a reasonable simplifica-
tion for # ( j ,q)!"$ei

T /"0 corresponding to k%ei#("0 /
kv Te)ln(k%ei).

Equations &7', &9', &10', and &12'constitute a closed sys-
tem for a given laser intensity Ik . We will further simplify
the model by assuming a zero net longitudinal current j !
$0 ((ne$(ni)(n , ue!$ui!)u !). Eliminating an electric
field E !* from the potential part of hydrodynamic equations
&7'we can rewrite them in the following form:

*
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2%v Ti
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2
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Here cs$!ZTe /mi is the ion acoustic velocity and the fol-
lowing definitions of the transport coefficients have been
used:18 -$.!/2Te /0 , +$+q!e/+ j /0 , +u$+r
%(31/32)+ j

200 /0 , #$#q%e/# j /0 , and #u$#r
%(31/32)+ j# j00 /0 .

Nonpotential parts of hydrodynamical equations de-
scribe perturbations of an ion vorticity, W$2&u, and a
quasi-static magnetic field, B. Neglecting small terms related
to the electron–ion energy exchange and ion–ion collisions,
we find from &7', &9', and &12'the following set of equations
for the vortical perturbations:
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In the long wavelength limit k%ei#1, the right hand side of
Eq. &16' corresponds to the well-known collisional current
driven by a high-frequency electromagnetic field.28

VI. PLASMA RESPONSE TO A RANDOMIZED LASER
BEAM

The linear fluid theory of Sec. V describes fluctuations
of hydrodynamical variables induced by the random compo-
nent of a laser intensity. Following standard steps of the
general theory of plasma fluctuations &cf., e.g., Ref. 19'we
apply a time Fourier transform to Eqs. &15'–&17', solve the
linear system of algebraic equations and express density, ve-
locity, temperature, vorticity, and magnetic field perturba-
tions in terms of the Fourier component of a laser intensity.
We also assume that the heat transport is a fast process sat-
isfying condition, "#-k2/ne . One finds the following rela-
tions for potential perturbations :
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The function DN(" ,k),
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&"/kcs'2%2i5a"/k2cs
2!&v s /cs'2

, &19'

describes spectral properties of longitudinal plasma perturba-
tions &denominator' and the efficiency of their coupling to
laser intensity fluctuations in terms of the coefficient Ak .
The denominator of the function D describes ion acoustic
resonance, where the ion acoustic wave damping, 5a , is
given by

5a$
2k2v Ti

2

3$ i
Re, i%$ei

T cs
2

2v Te
2 +u%cs

2ne
&1!+'2

2-
. &20'

This expression accounts for both electron collisionless and
electron and ion collisional effects. The ion acoustic group
velocity, v s$!cs2%v Ti

2 6 i, depends on the ion specific heat
ratio 6 i$5/3%(4"/3$ i) Im, i . Finally, the coefficient

Ak$
1
2%#u%

nev Te%ei

-
&1!+'" 1

k2%ei
2 %## &21'

gives the strength of the coupling of density fluctuations to
the laser intensity perturbation. It depends on IB heating and
PF effects which are described using our nonlocal transport
theory. Figure 2 shows variations of coupling coefficient Ak
as a function of collisionality parameter k%ei . The coeffi-
cient Ak decreases as k%ei increases and grows with the ionic
charge, Z. Deviations from the classical collisional theory
&dashed-dotted lines in Fig. 2' start in the long wavelength
regime where the coupling coefficient Ak depends on IB
heating. Nonlocal effects are more pronounced in high Z
plasmas &compare curves for Z$8 and 64 in Fig. 2'. This is
typical behavior for all nonlocal transport coefficients.15,16,18

The coupling coefficient Ak displays the following
asymptotic behavior. In the long wavelength limit,
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hydrodynamical equations are not applicable for vortical
plasma motion in the collisionless regime because they have
been derived without taking into account second order laser–
plasma coupling terms !"0

!2. This approximation neglects a
magnetization current27 which is a reasonable simplifica-
tion for # ( j ,q)!"$ei

T /"0 corresponding to k%ei#("0 /
kv Te)ln(k%ei).

Equations &7', &9', &10', and &12'constitute a closed sys-
tem for a given laser intensity Ik . We will further simplify
the model by assuming a zero net longitudinal current j !
$0 ((ne$(ni)(n , ue!$ui!)u !). Eliminating an electric
field E !* from the potential part of hydrodynamic equations
&7'we can rewrite them in the following form:
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Here cs$!ZTe /mi is the ion acoustic velocity and the fol-
lowing definitions of the transport coefficients have been
used:18 -$.!/2Te /0 , +$+q!e/+ j /0 , +u$+r
%(31/32)+ j

200 /0 , #$#q%e/# j /0 , and #u$#r
%(31/32)+ j# j00 /0 .

Nonpotential parts of hydrodynamical equations de-
scribe perturbations of an ion vorticity, W$2&u, and a
quasi-static magnetic field, B. Neglecting small terms related
to the electron–ion energy exchange and ion–ion collisions,
we find from &7', &9', and &12'the following set of equations
for the vortical perturbations:
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In the long wavelength limit k%ei#1, the right hand side of
Eq. &16' corresponds to the well-known collisional current
driven by a high-frequency electromagnetic field.28

VI. PLASMA RESPONSE TO A RANDOMIZED LASER
BEAM

The linear fluid theory of Sec. V describes fluctuations
of hydrodynamical variables induced by the random compo-
nent of a laser intensity. Following standard steps of the
general theory of plasma fluctuations &cf., e.g., Ref. 19'we
apply a time Fourier transform to Eqs. &15'–&17', solve the
linear system of algebraic equations and express density, ve-
locity, temperature, vorticity, and magnetic field perturba-
tions in terms of the Fourier component of a laser intensity.
We also assume that the heat transport is a fast process sat-
isfying condition, "#-k2/ne . One finds the following rela-
tions for potential perturbations :
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describes spectral properties of longitudinal plasma perturba-
tions &denominator' and the efficiency of their coupling to
laser intensity fluctuations in terms of the coefficient Ak .
The denominator of the function D describes ion acoustic
resonance, where the ion acoustic wave damping, 5a , is
given by

5a$
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This expression accounts for both electron collisionless and
electron and ion collisional effects. The ion acoustic group
velocity, v s$!cs2%v Ti

2 6 i, depends on the ion specific heat
ratio 6 i$5/3%(4"/3$ i) Im, i . Finally, the coefficient

Ak$
1
2%#u%

nev Te%ei

-
&1!+'" 1

k2%ei
2 %## &21'

gives the strength of the coupling of density fluctuations to
the laser intensity perturbation. It depends on IB heating and
PF effects which are described using our nonlocal transport
theory. Figure 2 shows variations of coupling coefficient Ak
as a function of collisionality parameter k%ei . The coeffi-
cient Ak decreases as k%ei increases and grows with the ionic
charge, Z. Deviations from the classical collisional theory
&dashed-dotted lines in Fig. 2' start in the long wavelength
regime where the coupling coefficient Ak depends on IB
heating. Nonlocal effects are more pronounced in high Z
plasmas &compare curves for Z$8 and 64 in Fig. 2'. This is
typical behavior for all nonlocal transport coefficients.15,16,18

The coupling coefficient Ak displays the following
asymptotic behavior. In the long wavelength limit,
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hydrodynamical equations are not applicable for vortical
plasma motion in the collisionless regime because they have
been derived without taking into account second order laser–
plasma coupling terms !"0

!2. This approximation neglects a
magnetization current27 which is a reasonable simplifica-
tion for # ( j ,q)!"$ei

T /"0 corresponding to k%ei#("0 /
kv Te)ln(k%ei).

Equations &7', &9', &10', and &12'constitute a closed sys-
tem for a given laser intensity Ik . We will further simplify
the model by assuming a zero net longitudinal current j !
$0 ((ne$(ni)(n , ue!$ui!)u !). Eliminating an electric
field E !* from the potential part of hydrodynamic equations
&7'we can rewrite them in the following form:

*

*t (n%iku !ne$0 ,

*

*t u !$!ik&cs
2%v Ti

2 '"(n
ne

%
(Te*
Te

#%ikcs
2+

(Te*
Te

!ikv Ti
2 (Ti
Ti

!"4k2v Ti23$ i
,̂ i%$ei

T +u
cs
2

v Te
2 #u !

!ikcs
2"12%#u# Ik

ncTe
,

&15'
*

*t (Te*$!
2k2-
3ne

(Te*!
2
3 iku !Te&1!+'

%
2
3nc

$ei
T &1%#k2%ei

2 'Ik ,

*

*t (Ti$!
2
3 iku !Ti .

Here cs$!ZTe /mi is the ion acoustic velocity and the fol-
lowing definitions of the transport coefficients have been
used:18 -$.!/2Te /0 , +$+q!e/+ j /0 , +u$+r
%(31/32)+ j

200 /0 , #$#q%e/# j /0 , and #u$#r
%(31/32)+ j# j00 /0 .

Nonpotential parts of hydrodynamical equations de-
scribe perturbations of an ion vorticity, W$2&u, and a
quasi-static magnetic field, B. Neglecting small terms related
to the electron–ion energy exchange and ion–ion collisions,
we find from &7', &9', and &12'the following set of equations
for the vortical perturbations:
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In the long wavelength limit k%ei#1, the right hand side of
Eq. &16' corresponds to the well-known collisional current
driven by a high-frequency electromagnetic field.28

VI. PLASMA RESPONSE TO A RANDOMIZED LASER
BEAM

The linear fluid theory of Sec. V describes fluctuations
of hydrodynamical variables induced by the random compo-
nent of a laser intensity. Following standard steps of the
general theory of plasma fluctuations &cf., e.g., Ref. 19'we
apply a time Fourier transform to Eqs. &15'–&17', solve the
linear system of algebraic equations and express density, ve-
locity, temperature, vorticity, and magnetic field perturba-
tions in terms of the Fourier component of a laser intensity.
We also assume that the heat transport is a fast process sat-
isfying condition, "#-k2/ne . One finds the following rela-
tions for potential perturbations :
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describes spectral properties of longitudinal plasma perturba-
tions &denominator' and the efficiency of their coupling to
laser intensity fluctuations in terms of the coefficient Ak .
The denominator of the function D describes ion acoustic
resonance, where the ion acoustic wave damping, 5a , is
given by
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This expression accounts for both electron collisionless and
electron and ion collisional effects. The ion acoustic group
velocity, v s$!cs2%v Ti

2 6 i, depends on the ion specific heat
ratio 6 i$5/3%(4"/3$ i) Im, i . Finally, the coefficient
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gives the strength of the coupling of density fluctuations to
the laser intensity perturbation. It depends on IB heating and
PF effects which are described using our nonlocal transport
theory. Figure 2 shows variations of coupling coefficient Ak
as a function of collisionality parameter k%ei . The coeffi-
cient Ak decreases as k%ei increases and grows with the ionic
charge, Z. Deviations from the classical collisional theory
&dashed-dotted lines in Fig. 2' start in the long wavelength
regime where the coupling coefficient Ak depends on IB
heating. Nonlocal effects are more pronounced in high Z
plasmas &compare curves for Z$8 and 64 in Fig. 2'. This is
typical behavior for all nonlocal transport coefficients.15,16,18

The coupling coefficient Ak displays the following
asymptotic behavior. In the long wavelength limit,
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For example, one can see that Ak"1 for k!ei%Z5/4. For
shorter wavelengths the IB contribution is small and the pon-
deromotive term dominates, i.e., Ak!1/2.

Relations for vortical spectral components follow from
Eqs. #16$and #17$:
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where (pe(i) is the electron #ion$plasma frequency and !
"eB/mec is the electron cyclotron frequency. Both the mag-
netic field and the vortex flow are generated by the electro-
magnetic stress tensor driven by laser radiation. The effi-
ciency of their generation strongly depends on the
characteristic frequency #laser pulse correlation time, .0
%(%1) or more exactly on the parameter (.s
/(v Te /c)2((pe /)ei

T )3((/(pe) where .s is characteristic
electron skin time. Figure 3 shows plots of "AB ,k"and "AW ,k"
as functions of the collisionality parameter for different val-
ues of (. and Z. Notice that efficiency of the generation of
magnetic fluctuations achieves its maximum for the interme-
diate collisionality, k!ei'1, while the efficiency of the vor-
tical flow excitation increases as one moves into the colli-
sionless limit.

VII. PLASMA CORRELATION FUNCTIONS

From the equations #18$and #23$, which relate velocity,
density, temperature, magnetic field, and vorticity perturba-

tions to laser intensity, one finds the following expressions
for the spectral densities of plasma correlation functions in
terms of laser intensity fluctuation spectral densities, 0I21( ,k
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The correlation functions for vortical components could be
conveniently written as follows:
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These expressions clearly show the dependence of plasma
correlation functions on the coupling coefficients Ak , AB ,k ,
and AW ,k .

Due to properties of the laser intensity correlation func-
tion, 0I21( ,k #6$, the fluctuation spectra are very narrow in
the z direction (kz(k!) and have a simple Gaussian shape.
Investigating general properties of the fluctuations we first
integrate the spectra with respect to kz (5dkz/2+) and con-
sider their properties in (k! ,()-plane. Spectra of potential
perturbations are azimuthally symmetric and they have

FIG. 2. Dependence of the coupling coefficient Ak on the collisionality
parameter k!ei for Z"8 and 64 #solid lines$. Dashed-dotted lines corre-
spond to the strongly collisional limit results.

FIG. 3. Dependence of the coupling coefficients "AB ,k"and "AW ,k"on the
collisionality parameter k!ei . Solid and dashed lines correspond to (.s
"10 and 100, respectively. Gray lines indicate the strongly collisional limit
results.
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Nonlocal heat flux was measured in laser-produced coronal plasmas using a novel Thomson scattering
technique. The measured heat flux was smaller than the classical values inferred from the measured plasma
conditions in regions with large temperature gradients and agreed with classical values for weak gradients.
Vlasov-Fokker-Planck simulations self-consistently calculated the electron distribution functions used to
reproduce the measured Thomson scattering spectra and to determine the heat flux. Multigroup nonlocal
simulations overestimated the measured heat flux.
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In diverse fields of plasma physics, including astro-
physics, inertial confinement fusion, and magnetohydro-
dynamics, classical thermal transport [1,2] provides the
foundation for calculating heat flux [3–7]. The classical
theories of thermal transport by Spitzer-Härm (SH) [1] and
Braginskii [2] specify the heat flux by a local expression, in
terms of the thermal conductivity κ and the electron
temperature gradient (e.g., qSH ¼ −κ∇Te). This theory
breaks down in the presence of large temperature gradients
[8–11], turbulence [12], or return current instabilities
[13–16]: classical theory does not include nonlocal effects
where energetic electrons travel distances comparable with
the temperature scale length before colliding.
Local thermal transport theories [1,2] follow from a

perturbative solution of a kinetic equation in terms of the
collision parameter λei=LT ≪ 1, where λei is the electron-
ion (e-i) mean free path and LT ¼ j∇ lnðTeÞj−1 is the scale
length of the temperature gradient. Nonlocal theories
overcome limitations of classical theory by accounting
for the range of electron-ion mean free paths associated
with different electron velocities. By extending closure
relations for hydrodynamic models into the kinetic regime
of weak collisions, these theories [17–24] have established
the limits of classical transport (λei=LT ∼ 10−2).
In laser-produced plasmas, classical theory predicts

unphysically large thermal transport and hydrodynamic
simulations of these plasmas require an ad hoc limiter on
the heat flux to match experimental observables. His-
torically, these limiters were set by kinetic simulations
[17,25–27], integrated experiments [10,11,28,29], or
more-focused Thomson scattering (TS) measurements of
the local plasma conditions (i.e., electron temperature and
density) [8,13,30,31]. More recently, the nonlocal Schurtz,
Nicolaï, and Busquet (SNB) model [23] was introduced as

a computationally efficient method for calculating the
nonlocal heat flux in large-scale multidimensional hydro-
dynamic simulations. Experiments that attempt to measure
nonlocal transport have, however, been limited to indirect
observations [8,24,30–32].
In this Letter, we present the first direct measurement of

nonlocal heat flux. A novel implementation of collective
Thomson scattering measured heat flux by probing the

(a) (b)

FIG. 1. (a) Calculated Thomson-scattering features (red curve,
right axis) from electron plasma waves [Eq. (1)] are shown
(vϕ ¼ ω=k) using a Maxwellian (solid blue curve, left axis)
electron distribution function and the non-Maxwellian (dashed
blue curve) distribution that accounts for classical SH heat flux
(λei=LT ¼ 2.2× 10−3, q=qFS ¼ 3%). Inset: For a fixed normal-
ized phase velocity, the ratio (R) of the peak scattered power of
the up- and downshifted features are shown for calculations that
use classical SH (solid curve, top axis) and nonlocal (dashed
curve, bottom axis) distribution functions over a range of heat
flux. (b) A schematic of the setup is shown.
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FIG. 1. (a) Calculated Thomson-scattering features (red curve,
right axis) from electron plasma waves [Eq. (1)] are shown
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electron distribution function and the non-Maxwellian (dashed
blue curve) distribution that accounts for classical SH heat flux
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FIG. 1. (a) Calculated Thomson-scattering features (red curve,
right axis) from electron plasma waves [Eq. (1)] are shown
(vϕ ¼ ω=k) using a Maxwellian (solid blue curve, left axis)
electron distribution function and the non-Maxwellian (dashed
blue curve) distribution that accounts for classical SH heat flux
(λei=LT ¼ 2.2× 10−3, q=qFS ¼ 3%). Inset: For a fixed normal-
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use classical SH (solid curve, top axis) and nonlocal (dashed
curve, bottom axis) distribution functions over a range of heat
flux. (b) A schematic of the setup is shown.
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FIG. 1. (a) Calculated Thomson-scattering features (red curve,
right axis) from electron plasma waves [Eq. (1)] are shown
(vϕ ¼ ω=k) using a Maxwellian (solid blue curve, left axis)
electron distribution function and the non-Maxwellian (dashed
blue curve) distribution that accounts for classical SH heat flux
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consistent with thermal transport, with Maxwellian electron
distribution functions. The excellent quality of the fits over
the complete spectrum indicate the high accuracy of the
shape of the distribution functions used. The significant
deviation from the measured spectra that occurs when not
accounting for the effects of heat flux (i.e., Maxwellian
distribution functions) shows the sensitivity of the meas-
urement. The non-Maxwellian distribution functions were
determined from a Fokker-Planck simulation [40] where
the electron temperature and density profiles were con-
structed to equal the measured values. Discrepancies
between the shape of the measured and calculated spectra
at the locations closest to the target suggest that the
simulations do not accurately reproduce the electron dis-
tribution function far from the resonance and suggest that
more work is needed.
Figure 3 shows the resulting heat flux measurements

at the five probed locations obtained by integrating the
electron distribution functions used to fit the Thomson-
scattering (TS) spectrum ½qTS ¼

R
1
2mv2vfeðvÞd3v%. The

measured heat flux is compared to classical heat flux values
(qSH ¼ −κ∇Te) determined by calculating the Spitzer
thermal conductivity and the local temperature gradient
from the measured plasma profiles (Fig. 4). Excellent
agreement between the classical and measured heat flux
is observed for the location farthest from the target surface,
but for locations closer to the target surface, the measured
flux is smaller than the classical values. This difference
highlights the nonlocal nature of the thermal transport.
Figure 4 presents the measured electron temperature and

density profiles determined from fitting the blueshifted
features with the Thomson-scattering power spectrum,
assuming Maxwellian electron distribution functions
(Fig. 2). The electron temperature decreased from

1.27 & 0.04 to 1.12 & 0.04 keV over 400 μm. The electron
temperature gradient at each measurement location was
determined by fitting a fifth-order polynomial to the
measurements. The uncertainty in the temperature gradient
was calculated by varying the data within the relative
error bars, which were used to calculate the errors in the
classical heat flux (Fig. 3). Over this same distance, the
electron density dropped from 8.36 & 0.04 × 1019 cm−3 to
2.63 & 0.01 × 1019 cm−3. The high signal-to-noise ratio in
the measured spectra resulted in excellent χ2 statistical fits,

FIG. 3. The heat flux (red points) measured along the target
normal is compared with classical heat flux (SH) calculations
(blue points) and heat flux values (black points) obtained from
the simulations using the SNB model. Both the simulations and
calculations were initiated with the measured electron temper-
atures and densities. For reference, λei=LT ¼ 1.4 × 10−2,
1.4 × 10−2, 1.3 × 10−2, 1.0 × 10−2, 7 × 10−3 at 1.1, 1.2, 1.3,
1.4, and 1.5 mm, respectively.

FIG. 2. The measured collective Thomson-scattering spectra (top row) and the corresponding spectral profiles (blue dots) at 1.5 ns
(bottom row). The data were fit (red curves) with Eq. (1) using non-Maxwellian electron distribution functions to measure heat flux.
Insets: The redshifted features are shown with calculations (black curves) that used the plasma conditions from the fit but a Maxwellian
electron distribution function. These spectra recover the location of the scattering features but fail to match their amplitudes. At 1.5 mm,
the spectrum was fit (dashed curve) with calculations that use a distribution function consistent with classical SH theory. All spectra are
normalized to the peak scattered power.
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Electron heat flux is poorly described by the classical diffusive model, qSH=−κ∇Te, in 
many laser produced plasmas. Thermal transport requires kinetic theory or nonlocal closure 
when reduced to hydrodynamical description.

• Asymmetry of resonances associated with electron
plasma waves propagating with and against the 
heat flux in " #,% is used to measure qTS by employing 
results of Vlasov-Fokker-Planck simulations.
• SNB is G. Shurtz, Ph. Nicolai, M. Busquet, 
Phys. Plasmas 7, 4238 (2000) – current standard 
in nonlocal transport implementation into radiation 
hydrodynamics.
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Thomson Scattering from High-Z Laser-Produced Plasmas
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We present the first simultaneous observations of ion acoustic and electron plasma waves in laser-
produced dense plasmas with Thomson scattering. In addition to measuring the standard plasma pa-
rameters, electron temperature and density, this novel experimental technique is shown to be a sensitive
method for temporally and spatially resolved measurements of the averaged ionization stage of the
plasma. Experiments with highly ionized gold plasmas clearly show that the inclusion of dielectronic
recombination in radiation-hydrodynamic modeling is critically important to model cooling plasmas.
[S0031-9007(98)08073-9]

PACS numbers: 52.70.Kz, 52.35.Fp, 52.40.Nk, 52.50.Jm

Highly ionized plasmas have been extensively produced
in many laboratories to study radiative properties of
hot dense matter [1,2] and for a variety of applications
related to inertial confinement fusion (ICF) research,
lithography, microscopy, laboratory astrophysics, or x-ray
lasers. The averaged ionization stage Z̄ of these plasmas
is a particularly important parameter because it determines
basic physical quantities such as collision rates and
acoustic velocities and is therefore a critical parameter for
the x-ray production (e.g., Ref. [3]).
In indirect-drive ICF research [4], high-Z hohlraums

are used as radiation enclosures to convert optical laser
light into x rays which drive the implosion of the fu-
sion capsule. In this scheme, the coupling of high-energy,
high-power lasers with matter and its conversion into
x rays depends on inverse bremsstrahlung absorption and
on laser scattering losses such as stimulated Brillouin
(SBS) and stimulated Raman scattering [5]. These pro-
cesses are known to be sensitive to the charge state Z̄
of the plasma [6,7]. In particular, the damping of ion
acoustic waves driven by SBS depends on the local value
of Z̄ in the dense, highly ionized gold plasma close
to the hohlraum walls [8]. Thus it is important to de-
velop an accurate diagnostic for local measurements of Z̄
and to test our understanding of this parameter by com-
paring accurate experiments with radiation-hydrodynamic
calculations.
In this Letter, we present the first simultaneous observa-

tions of ion acoustic and electron plasma wave fluctuation
spectra in a dense plasma using Thomson scattering (TS)
(e.g., Refs. [9,10]). This experiment gives accurate spa-
tially and temporally resolved information on plasma pa-
rameters; in particular, we present the first measurements
of the ionization stage Z̄ of a high-Z plasma using inco-
herent TS. In this experiment, we scatter from electron
plasma waves that are strongly Landau damped allowing
a direct measurement of the electron density ne and tem-

perature Te of the plasma. The frequency of the simul-
taneously observed ion acoustic waves, which is propor-
tional to

p
Z̄Te, is then used to obtain an accurate value

for the charge number Z̄. The analysis of the Thomson
scattered radiation has been performed with a generalized
theory of the TS cross section, which includes the effect
of gradients in the plasma, collisions, and non-Maxwellian
velocity distributions. We find that local electron tem-
peratures, Te, electron densities, ne, and the ionization
stage, Z̄, of the plasma can be measured with uncertainties
of ,20%. This degree of accuracy allows us to test vari-
ous atomic physics models. The present study shows for
the first time that radiation-hydrodynamic modeling using
the code LASNEX with an average atom model (XSN) [11]
significantly overestimates Z̄ in a recombining plasma.
Models with more detailed atomic physics spectra and
opacities [detailed configuration accounting (DCA)] [12]
show an improved description of the plasma conditions
due to the inclusion of dielectronic recombination.
The experiments were performed with the 30 kJ Nova

laser facility at the Lawrence Livermore National Labo-
ratory [13]. It is a Nd:glass laser operating at 1.053 mm
(1v) which can be frequency converted to 2v or 3v.
A small part of the laser beam was recently separated
out and frequency quadrupled providing an independent
4v-TS probe laser [14]. A 3v- (l ≠ 351 nm) heater
beam was smoothed with a kinoform phase plate to pro-
duce the plasma by irradiating a flat gold disk at an
angle of 64± to the disk normal. A 1.5-ns-long flat-
topped laser pulse with 100-ps rising and falling edges
was used with a total energy of 3.8 kJ. The focal spot size
was measured by two-dimensional plasma x-ray imag-
ing to be 400 3 600 mm2 indicating a laser intensity of
I ≠ 1015 Wcm22 on target.

4v TS was performed at various distances from the sur-
face of the Au disk including the high density plasma re-
gions close to the disk surface that cannot be diagnosed
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of 150 ps. To avoid saturation of this detector by the ion
feature we used an optical filter suppressing radiation with
l , 550 nm.
Figure 2 shows experimental 2v TS spectra of the ion

feature (a) and of the electron feature (b) together with
a theoretical fit using the following expression for the
scattered power, Ps, into a solid angle dV per frequency
range dv [20],

dPs

dVdv
≠

ĥ1 ? ĥ2

2p
r2

0

Z
dx Ssk, v; xdnesxd

3
Z

d2r'
cE2

0srd
8p

, (2)

where ĥi (i ≠ 1, 2) are polarization vectors defining the
directions of the Thomson probe electric field E0 and of
the scattered light detection; r0 ≠ e2ymec2. The dynami-
cal form factor describing fluctuations at wave number
k and frequency v, Ssk, v; xd, has been calculated
locally to take into account the spatial variations of
ne, Te, and V along the direction x, normal to the
disk. It further includes collisional effects [21,22], super-
Gaussian electron velocity distribution functions [23,24],
and Spitzer-Härm [25] electron transport.
Figure 2(b) shows the electron feature at various times

showing a heavily damped epw resonance with a wave-
length shift that decreases as the heater beam turns off.
The wavelength shift is approximated by the Bohm-Gross
dispersion relationv2 ≠ v2

p 1 3k2
epwTeyme, wherevp is

the plasma frequency. This relation indicates that the elec-
tron density of the plasma can be obtained with high accu-
racy (,15%) because we can precisely determine Te by
fitting the overall shape of the epw resonance in this
strongly damped regime. For example, the fit at t ≠
1.4 ns gives Te ≠ 2.0 keV and ne ≠ 2.1 3 1020 cm23 in-
cluding gradients as measured with the 4v probe. With-
out gradients the width of the peak at 735 nm is smaller
than observed. It turns out that the fit is fairly robust.

FIG. 2. Measured ion (a) and electron (b) feature of the
Thomson scattering spectrum along with theoretical fits.

Increasing Landau damping by increasing Te results in a
broader electron feature but also shifts the resonance to
larger wavelengths (Bohm-Gross relation). To compen-
sate for this shift, one has to assume a smaller electron
density which in turn reduces electron Landau damping,
and this fit does not converge.
Since electron Landau damping is sensitive to the elec-

tron velocity distribution function, the experimental data
also give information about the possible presence of non-
Maxwellian distributions in the plasma. Predictions from
Fokker-Planck calculations [26] result in a super-Gaussian
distribution, f , exps2ymd, with an exponent in the
range of m ≠ 3.5 4 for the averaged intensity of the 2v
probe laser. However, we find that at t ≠ 1.4 ns the elec-
tron feature is fitted best by a Maxwellian distribution
(m ≠ 2) while, e.g., m ≠ 3 results in a resonance that
is too narrow, not consistent with the measured gradi-
ents in the plasma. The predictions likely overestimate m
because in the present experiment, lateral electron trans-
port out of the probe beam volume plays an important
role which is not accounted for in the calculations. When
the plasma cools, e.g., at t ≠ t0 1 2 ns, the experimental
data can be fitted with a distribution with m ≠ 2.4 6 0.3.
This deviation from a Maxwellian appears to be insignifi-
cant as it introduces only a ,5% correction to the pa-
rameters deduced from the TS spectra.
Using the parameters from the epw resonance shown

in Fig. 2(b), we obtain Z̄ of the plasma by fitting the
simultaneously measured ion acoustic wave spectrum as
shown in Fig. 2(a). This example shows the ion feature
measured at t ≠ 1.4 ns, a calculated form factor from the
standard collisionless theory (e.g., Ref. [10]), theoretical
results including ion-ion collisions and modification to
the distribution function due to Spitzer-Härm thermal
transport [21], and the final theoretical fit [Eq. (2)]. The
ion acoustic peaks are significantly broadened due to the
inhomogeneity of the plasma in the scattering volume.
The measured temperature gradient implies a heat flux
and a corresponding skewing of the distribution function.
This results in different Landau damping of the two ion
acoustic peaks but does not change their frequencies.
Accounting for this asymmetry, the broadening from the
instrument (0.05 nm) and the spatial gradients allow a fit
of the entire spectrum. Te is given by the electron feature
with an error of about 15%, by varying the calculated
spectra within the noise of the data. Therefore, we can
deduce the averaged charge state Z̄ from the ion feature
with an error of 20%.
Figure 3 shows a compilation of the experimental data

Te, ne, and Z̄ together with two-dimensional simulations
using the radiation-hydrodynamic code LASNEX [27] with
two atomic physics packages. Both the calculations with
an average atomic physics model (XSN) [11] and the cal-
culations with detailed configuration accounting includ-
ing ,1000 levels [12] are in broad agreement with the
measurements during the heater beam pulse up to 1.5 ns.

99

• Simultaneous fits to ion acoustic and electron plasma
fluctuations are standard in TS experiments.
• Here ZTe is well approximated by the ion acoustic 
peaks separation (ZTe>>Ti).
• Inclusion of dielectronic recombination in radiation-
hydrodynamic modeling of Au plasma was croical
for the correct modeling of this plasma.
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background plasma temperature creates conditions of !!1.
The theoretical interpretation of the Langmuir wave spectra
has been based on the generalized expressions for the scat-
tered power in inhomogeneous plasmas6 and the standard
model of the dynamical form factor S(k ," ),20

S#k ," $"
2%

!&#k ," $!2 " d3v f 0#v $ '#" #k"v$, #15$

where " is the frequency shift of the scattered from 5026 Å
wavelength of the probe and &(k ," ) is a plasma dielectric
function.

Figure 6 shows the experimental data at t"2.25 ns #this
is the latest time spectra from Fig. 2 of Ref. 6$. All Langmuir
wave spectra in Ref. 6 have been interpreted by using a local
Maxwellian distribution function for f 0(v) in #15$ #the dot-
ted line in Fig. 6$. The difficulty of trying to reproduce ex-
perimental data with a super-Gaussian EDF #11$, in spite of
!!1, is illustrated in Fig. 6. A reduced number of superther-
mal electrons cannot support the broad Langmuir wave reso-
nance #the dashed line in Fig. 6$. However, non-Maxwellian
EDF can well reproduce the short wavelength part (5500Å
$($6500Å) of the experimental spectrum #cf. Fig. 6$
where the scattered power displays a local minimum #this
feature of the experimental measurement is also apparent on
two other plots, t"2 and 1.75 ns, in Fig. 2 of Ref. 6$. Theo-
retically, these local minima are only present for nonequilib-
rium distribution functions. The combined effect of the large
fluctuation levels at the plasma wave resonance and the local
minima at the shorter wavelength is well reproduced by our
new distribution function as shown in Fig. 6 #solid line$. This
is the first, ‘‘almost’’ direct measurement showing signatures
of the non-Maxwellian distribution functions in laser pro-
duced plasmas. In calculating the theoretical spectrum in Fig.
6 we assumed that the symmetric part of the EDF #13$ is
constant in time.

VI. CONCLUSIONS AND SUMMARY

In this paper, we have revisited the old problem of the
temporal evolution of the EDF in laser heated plasmas for

the case of moderate intensity laser fields (vE /vTe$1 and
ZvE

2 /vTe
2 !1). We have confirmed that the bulk of the elec-

tron distribution function is well approximated by the super-
Gaussian form with the exponent m varying with laser inten-
sity according to the well-known fit by Matte et al.4
However the tail of the electron distribution is much more
pronounced and approaches a Maxwellian distribution at ve-
locities much larger than thermal velocity due to the e– e
collisions. In the transition region where velocities are
slightly higher than the thermal velocity, the EDF is neither
the usual super-Gaussian nor Maxwellian. The smaller the
ion charge, the closer this transition region #12$ is to the
electron thermal velocity. This distribution function varies in
time with increasing average kinetic energy of electrons due
to IB heating. These analytical results have been confirmed
using the particle simulation method. In the code the elec-
trons evolve under the influence of a dipole laser field and
collisions with like and unlike species.14 Our simulations
have allowed the description of a smooth transition between
the super-Gaussian electron bulk and the Maxwellian tail.
We believe that our fit for the electron distribution function
#13$ can be useful for many practical applications.

In particular, the new EDF shows an increase in the
Landau damping for most of the Langmuir waves as com-
pared to results obtained with the super-Gaussian fit. We
have interpreted the experimental spectrum of electron
plasma wave fluctuations from Thomson scattering
measurements.6 This provides the first evidence for the exis-
tence of non-Maxwellian distribution functions in laser-
produced plasmas.
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FIG. 6. The electron plasma wave fluctuation spectra #in arbitrary units$ as
a function of the scattered light wavelength in Å. Experimental data #noisy
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E. Fourkal, et al. Phys. Plasmas 8, 550 (2001) • For the parameter ! = ⁄$%&' %()' > 1, 
e-e collisions are not frequent enough to 
restore Maxwellian in the bulk of electrons.
• Collisional absorption of the laser light 
(%& = ⁄,- ./) results in super-Gaussian
distribution functions:

By neglecting in Eq. !3" terms proportional to vE
2Cee , which

originate from e– e collisions involving the anisotropic part
of the EDF, we can reduce !3" to the model equation ana-
lyzed in Refs. 1 and 4. However, all of the e– e collision
terms in Eq. !3" are important for the correct description of
the electron distribution function at large velocities (v
!vTe). Note also that Eq. !2.3" of Ref. 9, which is the ki-
netic equation for the symmetric part of the distribution
function, is missing terms # vE

2 $Cee( f 0 ,% f 0 /%v)
"Cee(% f 0 /%v , f 0)& .

III. ELECTRON DISTRIBUTION FUNCTION

We use the standard definition for the electron density,
ne , thermal velocity, vTe , and electron temperature, Te :

ne#4' ! v2 f 0 dv , vTe
2 #

4'

3ne
! v4 f 0 dv(

Te
me
. !5"

Multiplying Eq. !1" by v2 and integrating over the entire
velocity range one obtains an equation for the time evolution
of the electron temperature

%Te
%t #

4' ZY
9neme

vE
2 f 0!0,t ", !6"

which demonstrates that the heating rate is entirely defined
by very slow electrons $ f 0(0,t)( f 0(v#0,t)& . For times
much longer than the e– e collision time we look for a solu-
tion to the electron distribution function in the following
form:

f 0#
n

!2' "3/2vTe! t "3
)" v

vTe! t "
,t#, !7"

where vTe(t) grows in time according to Eq. !6". By intro-
ducing a dimensionless velocity x#v/vTe(t), the equation
for )(x) can be written in the following form:

)I0
0"

x
3
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%x !I2
0"J$1

0 ""
*

6x $%)

%x "!2
'

x4

3 ))!0 "%
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%2)

%x2 " I00$ 7
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%x "$5I0
0"

7
3 I2

0$
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3 J$1

0 #"3!8
'
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%x )%#0,

!8"

where I0
0#!2/' +0

x)x2 dx , I2
0#!2/' x$2+0

x)x4 dx , and
J$1
0 #!2/' x+x

, )x dx . We have neglected the terms propor-
tional to %)/%t in deriving Eq. !8". We assume that these
terms are small after the initial time corresponding to few
e– e collision times. In Eq. !8" the term proportional to */x
describes IB heating while all the others !with and without
the factor *" are due to e– e collisions. The interplay be-
tween IB heating and e– e collisional relaxation determines
the electron distribution function in the entire range of elec-
tron velocities. The function )(x) in Eq. !8" satisfies two
integral relations,

!
0

,

x2) dx#!' /2, !
0

,

x4) dx#3!' /2, !9"

which originate from definitions of the electron density and
thermal energy !5".

The term proportional to Z$1 in Eq. !8" which originated
from the anisotropic part of the e– e collision operator can be
neglected for electrons from a bulk of the distribution func-
tion (x%1). For such a case the equation for ) !8" and
integral relations defining I0

0, I2
0, and J$1

0 can be rewritten as
a system of four first-order ordinary nonlinear differential
equations:

*

6
d)

dx "!2
'

*

18 x
4)!0 ")"xI0

0)

""13 x2I20!x ""
x2

3 J$1
0 # d)

dx #0,

dI0
0

dx #!2
'
x2) ,

d!x2I2
0"

dx #!2
'
x4) , !10"

d!J$1
0 /x "

dx #$!2
'
x) .

The system of equations given by !10" has been solved nu-
merically using the MATHEMATICA program,10 giving results
that are similar to distribution functions obtained by numeri-
cal simulations in Ref. 11. We have found solutions for dif-
ferent values of the parameter *. Figure 1 shows electron
distribution functions for *#0.5 and 3 in comparison with
the super-Gaussian fit which has been obtained from the nu-
merical solution to the Fokker–Planck kinetic equation,4

)!x "#)0e$(x/x0)
m
#3!'

2
m-!5/m "3/2

!3-!3/m ""5/2

&exp$$" xx0#
m%, !11"

where

x0#"3-!3/m "

-!5/m " #1/2, m#2"
3

1"1.66/*0.724 .

As one can see the super-Gaussian fit !11" gives a good
approximation for the bulk electrons of the laser heated dis-
tribution function. Note that the different fit has also been

FIG. 1. Solutions to the kinetic equation !10" for *#0.5 !1", and *#3 !2",
represented by solid lines as compared to the super-Gaussian fit !11".
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By neglecting in Eq. !3" terms proportional to vE
2Cee , which

originate from e– e collisions involving the anisotropic part
of the EDF, we can reduce !3" to the model equation ana-
lyzed in Refs. 1 and 4. However, all of the e– e collision
terms in Eq. !3" are important for the correct description of
the electron distribution function at large velocities (v
!vTe). Note also that Eq. !2.3" of Ref. 9, which is the ki-
netic equation for the symmetric part of the distribution
function, is missing terms # vE

2 $Cee( f 0 ,% f 0 /%v)
"Cee(% f 0 /%v , f 0)& .

III. ELECTRON DISTRIBUTION FUNCTION

We use the standard definition for the electron density,
ne , thermal velocity, vTe , and electron temperature, Te :

ne#4' ! v2 f 0 dv , vTe
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Multiplying Eq. !1" by v2 and integrating over the entire
velocity range one obtains an equation for the time evolution
of the electron temperature
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which demonstrates that the heating rate is entirely defined
by very slow electrons $ f 0(0,t)( f 0(v#0,t)& . For times
much longer than the e– e collision time we look for a solu-
tion to the electron distribution function in the following
form:
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tional to %)/%t in deriving Eq. !8". We assume that these
terms are small after the initial time corresponding to few
e– e collision times. In Eq. !8" the term proportional to */x
describes IB heating while all the others !with and without
the factor *" are due to e– e collisions. The interplay be-
tween IB heating and e– e collisional relaxation determines
the electron distribution function in the entire range of elec-
tron velocities. The function )(x) in Eq. !8" satisfies two
integral relations,
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The term proportional to Z$1 in Eq. !8" which originated
from the anisotropic part of the e– e collision operator can be
neglected for electrons from a bulk of the distribution func-
tion (x%1). For such a case the equation for ) !8" and
integral relations defining I0
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The system of equations given by !10" has been solved nu-
merically using the MATHEMATICA program,10 giving results
that are similar to distribution functions obtained by numeri-
cal simulations in Ref. 11. We have found solutions for dif-
ferent values of the parameter *. Figure 1 shows electron
distribution functions for *#0.5 and 3 in comparison with
the super-Gaussian fit which has been obtained from the nu-
merical solution to the Fokker–Planck kinetic equation,4
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As one can see the super-Gaussian fit !11" gives a good
approximation for the bulk electrons of the laser heated dis-
tribution function. Note that the different fit has also been

FIG. 1. Solutions to the kinetic equation !10" for *#0.5 !1", and *#3 !2",
represented by solid lines as compared to the super-Gaussian fit !11".
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J.-P. Matte, et al. , Plasma Phys. Contr. Fusion, 1988

• Electron-electron collisions between bulk electrons and fast electrons from the tail will 
restore Maxwellian tails , albeit slowly. In inhomogeneous plasmas that are locally heated 
by the laser heat carrying electrons will  repopulate the tails of the electron distribution
function.
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Super Gaussian approximates isotropic part of the electron distribution function (EDF). 
Such EDFs do not exist in laser produced plasmas because of localized heating and tails of 
hot electrons, return current, non-isotropic pressure contributions, etc. cf. Brunner, Valeo, 
Phys. Plasmas 9, 923 (2002); Batishchev et al. Phys. Plasmas 9, 2302 (2002).
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Anna Grassi, Frederico Fiuza, SLAC, described by 2D particle-in-cell (PIC) 
simulations Weibel instability of interpenetrating plasmas, magnetic field 
generation and collisionless shock formation 
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As a result of instability
plasma flows are transversely
modulated, give rise to current 
and B-field normal to the plane 
of simulations and shown at 
different times
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C. Bruulsema, F. Fiuza, W.R., G. Swadling, S. Glenzer, propose local measurement of magnetic 
field in Weibel unstable plasmas. TS spectra are used to calculate electric current, and B-field, 
assuming that electron density fluctuations and ! ", $ are not affected by the electromagnetic 
instability. The method is first validated by PIC simulations.

Thomson Scattering from Simulation is fit with Maxwellian f
e,i

(v)

• ‘TS region’ is chosen on a current filament, and particles in the region are used to 
make distribution functions. 

•

• To examine current, Maxwellian fits are applied to TS spectra to extract current

TS Spectrum from simulate distribution functions 
and from Maxwellian fit

J
x
 from PIC simulations with a sample TS 

region shown.

4

Electric current in PIC 
simulations of the 
interpenetrating plasmas

TS volume

Currents from TS fits track currents in PIC Simulations

Current fits follow trends of current growth 

Non-maxwellian tails in ion distribution 
functions in PIC simulation influence 
electron current measurements

Currents from TS spectra and PIC over the 
simulation time

Asymmetry in ion distribution function is 
fitted as a change in electron current.

5

Comparison of PIC current and 
results from “synthetic” TS

Current and field measured at late times in experimental plasma

Sample fits of Lab TS spectra

7

TS spectrum from lab plasma 
(G. Swadling, Session T06.00004)

Electron density and temperature in lab 
plasma obtained from electron feature fit

Electron temperature used to constrain 
ion feature fit, which determines current.

Sample of the experimental 
TS spectra and fits 

Current and field measured at late times in experimental plasma

Filed strength from fit current 

8

TS spectrum from lab plasma (by George 
Swadling)

Spectra at early times have low density, making it difficult to measure the growth phase.

Assuming a cylindrical filament of current with average current density determined by the 

TS fits, the field is found to be 0.25 MG (σ = 0.01, similar to radiography observations*).

•

•

*Huntington, C.M. et al. Nature Physics 11, 173-176 (2015)

Field strength from fit 
current
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The same analysis is repeated for the density and flow velocity profiles of the expanding 
plasmas, rather than periodic initially homogeneous flows.

Ion current in PIC simulations of the 
interpenetrating plasmas TS volume

• Distributions functions are extracted from the TS 
volume in PIC simulations.
• Standard collisionless ! ",$ is calculated
using these distribution functions.
• Form factor is fitted with Maxwellians with several
free parameters including “occupation” number.
• This allows evaluation of currents and B-fields.

synthetic
TS
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onto the plasma with an f /3 lens combined with a RPP with
elongated elements (0.130.9) mm2, producing a line focus
of 100 mm31 mm along the axis of the interaction beam.
The Thomson scattered light was collected with an off-axis,
34° aperture parabolic mirror, which was part of the optical
system imaging the focal region onto the entrance slit of a
spectrometer, after a rotation by 90°. The output of the spec-
trometer was coupled to a streak camera. The CTS
spectrometer–streak camera combination was aligned to ob-
serve scattered light from a small volume in the region of
peak SRS-driven EPW activity, which was ;300 mm to-
ward the interaction beam from the plasma center.18 The size
of the probed volume was set by the magnification of the
imaging system, the width of the slits of the spectrometer,
and the streak camera, and the focal spot diameter of the
interaction beam. This was 75 mm along the interaction axis,
70 mm in height, and 300 mm along the transverse direction.
A scheme of the probed volume along with isodensities of
the plasma is shown in Fig. 2. The range of wavelengths
observed was between 280 and 480 nm, with a temporal
resolution of 50 ps and a spectral resolution of 30 Å. Time-
integrated results, obtained under different pumping condi-
tions and with different diagnostics, have been previously
reported.19

The geometry of the CTS diagnostic was designed to
collect downshifted scattered light (vdown5vprobe2vepw1)
from the primary EPWs associated with backward SRS. Up-
shifted scattered light (vup5vprobe1vepw2) from secondary
EPWs having same frequency and opposite wave numbers as
the primary EPWs was emitted in the same direction and
collected by the same CTS detector optics. Figure 3 shows
the general wave vector diagrams for the Raman and the LDI
decays, and for Thomson scattering, as well as the relation-
ships between the wave numbers and frequencies of the
probe beam ~kprobe , vprobe!, the EPW ~kepw1,2 , vepw1,2! and
scattered beam ~kscatt , vscatt!. To ensure that the two strongly
different light amplitudes both fell within the streak camera
dynamic range, colored filters that attenuated only the SRS-
driven EPW scattered light were placed before the spectrom-
eter and a neutral filter was positioned over only the SRS-
driven EPW side of the spectrum, after the spectrometer, at
the streak camera entrance slit. The spectral dependence of
the total optical system was taken into account when unfold-
ing the data to make quantitative wave–amplitude compari-
sons.

FIG. 2. Imaging of the plasma to the entrance slit of the spectrometer. ~a!
Sketch of the plasma electron isodensities (ne5const), indicating the direc-
tion of the interaction laser beam. ~b! Image of the plasma at the entrance
slit of the spectrometer, after rotation by 90°. The probed volume is located
300 mm in the front part of the plasma. It is 75 mm along the interaction
axis, 70 mm in height, and 300 mm along the transverse direction.

FIG. 3. Wave-vector diagrams for the SRS of the interaction beam, the LDI
of the electron plasma waves produced by SRS, and Thomson scattering of
the probe beam. The relationships between the wave numbers and frequen-
cies of the probe beam ~kprobe , vprobe!, the EPW ~kepw1,2 , vepw1,2!, and
scattering beam ~kscatt , vscatt! are also indicated.

FIG. 4. ~a! Time-resolved spectra of the Thomson scattered light from ion
acoustic waves associated with stimulated Brillouin scattering, primary elec-
tron plasma waves associated with stimulated Raman scattering, and sec-
ondary electron plasma waves associated with the Langmuir decay of the
former ones. These three types of waves are driven by the interaction beam.
The first signal in time is Thomson scattered light from electron plasma
waves produced by the two-plasmon decay of the plasma-producing beams.
Intensity of the interaction beam was 831013 W/cm2. Different optical at-
tenuations have been used for the four signals. ~b! Temporal evolution of
scattered light from primary and secondary EPWs showing symmetrical
slopes in frequencies as a function of time @dvup /dt/dvdown /dt
5(ldown /lup)2dlup /dt/dldown /dt521# .
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FIG. 2. Spectrum of the light Thomson scattered off EPWs for a laser energy equal to (a) 17 J, (b) 24 J, and (c) 68 J. The kEPW
and vEPW axes are shown in correspondence to the measured parameter d and lscatt axes. For these shots, the collection volume was
located in the front part of the plasma at 250 mm from the initial target plane where the maximum of Raman activity was observed.
The spectral resolution is 40 Å.

energy case. The scattered intensity at ne!nc ! 0.076 and
its decomposition into EPW peaks are plotted in Fig. 3b
as a function of the EPW wave vector. In this case, the
spectrum is steeper than in the middle energy case: The
relative line intensities of the components EPW1, EPW3,

FIG. 3. (a) Scattered intensity (in arbitrary units) and its de-
composition into the EPW1, EPW3, EPW5, and EPW7 con-
tributions at ne!nc ! 0.055 as a function of the probed EPW
wave vector for a laser energy of 24 J. The corresponding sec-
tion is shown by the dotted vertical line in Fig. 2b. (b) The
same plot as in panel (a) but for the spectrum measured at 68 J
at ne!nc ! 0.076. The units are the same in both panels so that
the respective level for these two plots can be compared.

and EPW5 are 1:0.33:0.1. The total energy transferred in
the cascade EPWs in that case is found to be less than the
energy of the primary EPW. We therefore conclude that in
the high laser energy case a smaller part of the SRS energy
is transferred into the cascade decay products than in the
medium energy case.

We now show that the broadening of the IAW Thom-
son scattering spectra is in agreement with the number of
LDI cascades deduced from the EPW spectra. Figure 4
shows that the broadening of each IAW TS peak is of the
order of "1.5 Å. Various sources may contribute to the
width of each peak. First, the collected light is coming
from a certain volume of plasma. The variation of the
electron density across this volume produces a variation
of wave number corresponding to a wavelength broaden-
ing of "0.13 Å. The variation of the expansion velocity
produces a broadening of "0.53 Å [9]. The broadening
resulting from these two sources is larger than the spec-
tral resolution, 0.3 Å, but cannot account for the observed-
spectral width of 1.5 Å. On the other hand, this observed
width can be explained by the fact that each peak is the su-
perposition of light scattered off IAWs coming from four

FIG. 4. Spectrum of down- and up-TS light off IAWs produced
in the odd and even steps of the LDI cascade. This spectrum is
time integrated over 100 ps around maximum scattered energy.

045001-3 045001-3

TS spectrum of epw cascade reconstructed from
the experimental data using instrumental spectral 
width for each component of the cascade.

Nonlinear electron plasma waves driven by the stimulated Raman scattering undergo
further decays that contribute to saturation of the scattering instability.
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Thomson scattering has been used to investigate the nonlinear evolution of electron plasma waves
(EPWs) generated by stimulated Raman scattering (SRS). Two complementary diagnostics demonstrate
the occurrence of the cascade of Langmuir decay instabilities (LDI). The EPW wave-number spec-
trum displays an asymmetric broadening towards small wave numbers, interpreted as a signature of the
secondary EPWs produced in the LDI cascade. The number of cascade steps is in agreement with the
broadening of the associated ion-acoustic-waves’ spectra. The total energy transferred in the EPWs cas-
cade is found to be either less than or of the same order of magnitude as the energy of the primary EPW.
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The control of laser-plasma instabilities represents an
important component of the laser-driven inertial confine-
ment fusion (ICF) research. The future megajoule lasers
[1,2] will give rise to plasma conditions for which these
instabilities might grow at a level so high that the linear
description fails. Their final excitation level will conse-
quently be determined by saturation mechanisms [3] whose
identification and comprehension are prerequisite for an
efficient control. In this Letter, we present new experi-
mental results concerning the nonlinear evolution of the
stimulated Raman scattering (SRS). SRS is the paramet-
ric instability by which the incident laser wave decays
into an electron plasma wave (EPW) and another trans-
verse wave. It could be detrimental in ICF experiments
because the scattered light decreases the laser/plasma cou-
pling [4] and may affect the irradiation symmetry. In addi-
tion, the EPWs accelerate electrons which may preheat the
fusion fuel.

A possible saturation mechanism for this instability
is the coupling of the SRS-generated EPW (henceforth
named the primary EPW, and denoted as EPW1) to the
ion acoustic waves (IAW). Depending on the value of the
quantity kEPW1lDe (here kEPW1 denotes the EPW1 wave
number and lDe is the Debye length), this coupling may
give rise to (i) the Langmuir decay instability (LDI) [5] in
the regime kEPW1lDe . 0.2 [LDI is the process by which
the primary EPW decays into a secondary EPW (EPW2)
and an ion acoustic wave (IAW2); this process may repeat
itself, the secondary EPW2 decaying into another EPW
(EPW3) and IAW (IAW3), thus generating the so-called
LDI cascade] and (ii) the Langmuir collapse [6,7] in
the opposite regime kEPW1lDe , 0.2 . The EPW1 wave
number in our experiment lies in the domain kEPW1lDe !
0.2 0.3 , so that the coupling of the primary EPW to
the IAWs could give rise to the LDI cascade. The LDI
cascade may be viewed as corresponding to an energy

sink for the primary EPW, because the secondary EPWs
are nonresonant for SRS. Therefore, the LDI cascade
can be expected to be an efficient nonlinear saturation
mechanism for SRS.

The LDI occurrence has been demonstrated in a previous
experiment [8] where the two decay products, namely the
secondary IAW and EPW, were observed simultaneously.
The Thomson scattering (TS) spectra of IAWs exhibited
two components interpreted as the evidence of the first
LDI cascade step. Counterpropagating IAWs (see Fig. 1a)
produced by the initial LDI of the primary EPW and by
the first step in the LDI cascade were respectively probed
by down and up TS giving two peaks in the IAW spectrum
separated by 3.5 Å. The next steps in the LDI cascade
could not be resolved, because the large Doppler effect
in the expanding plasma broadened each peak by 0.5 Å,
whereas the separation between the peaks corresponding
to the IAWs produced in successive even cascade steps
(IAW2 and IAW4) was 0.2 Å only [9].

In the present experiment, we set up a new diagnos-
tic to k-resolve the EPW spectra for a well-defined elec-
tron density in order to eliminate the strong dependence of
kEPW1 on the time evolving density. Above a laser thresh-
old of 2 3 1013 W"cm2 , the k spectra show an asymmet-
ric broadening towards small wave numbers, consistently
with the LDI cascade. This broadening is interpreted as
due to the contribution of the EPWs produced in the LDI
cascade, up to the seventh secondary EPW. Because the
decay products are all probed with a unique TS geome-
try, the k spectra give an accurate measurement of their
relative intensity. These observations are of fundamental
importance in the context of SRS saturation because the
EPW and IAW evolutions determine the energy balance in
the SRS process.

Four beams of the Laboratoire pour l’Utilisation des
Lasers Intenses (LULI) facility (see Fig. 1b) were used to
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The control of laser-plasma instabilities represents an
important component of the laser-driven inertial confine-
ment fusion (ICF) research. The future megajoule lasers
[1,2] will give rise to plasma conditions for which these
instabilities might grow at a level so high that the linear
description fails. Their final excitation level will conse-
quently be determined by saturation mechanisms [3] whose
identification and comprehension are prerequisite for an
efficient control. In this Letter, we present new experi-
mental results concerning the nonlinear evolution of the
stimulated Raman scattering (SRS). SRS is the paramet-
ric instability by which the incident laser wave decays
into an electron plasma wave (EPW) and another trans-
verse wave. It could be detrimental in ICF experiments
because the scattered light decreases the laser/plasma cou-
pling [4] and may affect the irradiation symmetry. In addi-
tion, the EPWs accelerate electrons which may preheat the
fusion fuel.

A possible saturation mechanism for this instability
is the coupling of the SRS-generated EPW (henceforth
named the primary EPW, and denoted as EPW1) to the
ion acoustic waves (IAW). Depending on the value of the
quantity kEPW1lDe (here kEPW1 denotes the EPW1 wave
number and lDe is the Debye length), this coupling may
give rise to (i) the Langmuir decay instability (LDI) [5] in
the regime kEPW1lDe . 0.2 [LDI is the process by which
the primary EPW decays into a secondary EPW (EPW2)
and an ion acoustic wave (IAW2); this process may repeat
itself, the secondary EPW2 decaying into another EPW
(EPW3) and IAW (IAW3), thus generating the so-called
LDI cascade] and (ii) the Langmuir collapse [6,7] in
the opposite regime kEPW1lDe , 0.2 . The EPW1 wave
number in our experiment lies in the domain kEPW1lDe !
0.2 0.3 , so that the coupling of the primary EPW to
the IAWs could give rise to the LDI cascade. The LDI
cascade may be viewed as corresponding to an energy

sink for the primary EPW, because the secondary EPWs
are nonresonant for SRS. Therefore, the LDI cascade
can be expected to be an efficient nonlinear saturation
mechanism for SRS.

The LDI occurrence has been demonstrated in a previous
experiment [8] where the two decay products, namely the
secondary IAW and EPW, were observed simultaneously.
The Thomson scattering (TS) spectra of IAWs exhibited
two components interpreted as the evidence of the first
LDI cascade step. Counterpropagating IAWs (see Fig. 1a)
produced by the initial LDI of the primary EPW and by
the first step in the LDI cascade were respectively probed
by down and up TS giving two peaks in the IAW spectrum
separated by 3.5 Å. The next steps in the LDI cascade
could not be resolved, because the large Doppler effect
in the expanding plasma broadened each peak by 0.5 Å,
whereas the separation between the peaks corresponding
to the IAWs produced in successive even cascade steps
(IAW2 and IAW4) was 0.2 Å only [9].

In the present experiment, we set up a new diagnos-
tic to k-resolve the EPW spectra for a well-defined elec-
tron density in order to eliminate the strong dependence of
kEPW1 on the time evolving density. Above a laser thresh-
old of 2 3 1013 W"cm2 , the k spectra show an asymmet-
ric broadening towards small wave numbers, consistently
with the LDI cascade. This broadening is interpreted as
due to the contribution of the EPWs produced in the LDI
cascade, up to the seventh secondary EPW. Because the
decay products are all probed with a unique TS geome-
try, the k spectra give an accurate measurement of their
relative intensity. These observations are of fundamental
importance in the context of SRS saturation because the
EPW and IAW evolutions determine the energy balance in
the SRS process.

Four beams of the Laboratoire pour l’Utilisation des
Lasers Intenses (LULI) facility (see Fig. 1b) were used to
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The control of laser-plasma instabilities represents an
important component of the laser-driven inertial confine-
ment fusion (ICF) research. The future megajoule lasers
[1,2] will give rise to plasma conditions for which these
instabilities might grow at a level so high that the linear
description fails. Their final excitation level will conse-
quently be determined by saturation mechanisms [3] whose
identification and comprehension are prerequisite for an
efficient control. In this Letter, we present new experi-
mental results concerning the nonlinear evolution of the
stimulated Raman scattering (SRS). SRS is the paramet-
ric instability by which the incident laser wave decays
into an electron plasma wave (EPW) and another trans-
verse wave. It could be detrimental in ICF experiments
because the scattered light decreases the laser/plasma cou-
pling [4] and may affect the irradiation symmetry. In addi-
tion, the EPWs accelerate electrons which may preheat the
fusion fuel.

A possible saturation mechanism for this instability
is the coupling of the SRS-generated EPW (henceforth
named the primary EPW, and denoted as EPW1) to the
ion acoustic waves (IAW). Depending on the value of the
quantity kEPW1lDe (here kEPW1 denotes the EPW1 wave
number and lDe is the Debye length), this coupling may
give rise to (i) the Langmuir decay instability (LDI) [5] in
the regime kEPW1lDe . 0.2 [LDI is the process by which
the primary EPW decays into a secondary EPW (EPW2)
and an ion acoustic wave (IAW2); this process may repeat
itself, the secondary EPW2 decaying into another EPW
(EPW3) and IAW (IAW3), thus generating the so-called
LDI cascade] and (ii) the Langmuir collapse [6,7] in
the opposite regime kEPW1lDe , 0.2 . The EPW1 wave
number in our experiment lies in the domain kEPW1lDe !
0.2 0.3 , so that the coupling of the primary EPW to
the IAWs could give rise to the LDI cascade. The LDI
cascade may be viewed as corresponding to an energy

sink for the primary EPW, because the secondary EPWs
are nonresonant for SRS. Therefore, the LDI cascade
can be expected to be an efficient nonlinear saturation
mechanism for SRS.

The LDI occurrence has been demonstrated in a previous
experiment [8] where the two decay products, namely the
secondary IAW and EPW, were observed simultaneously.
The Thomson scattering (TS) spectra of IAWs exhibited
two components interpreted as the evidence of the first
LDI cascade step. Counterpropagating IAWs (see Fig. 1a)
produced by the initial LDI of the primary EPW and by
the first step in the LDI cascade were respectively probed
by down and up TS giving two peaks in the IAW spectrum
separated by 3.5 Å. The next steps in the LDI cascade
could not be resolved, because the large Doppler effect
in the expanding plasma broadened each peak by 0.5 Å,
whereas the separation between the peaks corresponding
to the IAWs produced in successive even cascade steps
(IAW2 and IAW4) was 0.2 Å only [9].

In the present experiment, we set up a new diagnos-
tic to k-resolve the EPW spectra for a well-defined elec-
tron density in order to eliminate the strong dependence of
kEPW1 on the time evolving density. Above a laser thresh-
old of 2 3 1013 W"cm2 , the k spectra show an asymmet-
ric broadening towards small wave numbers, consistently
with the LDI cascade. This broadening is interpreted as
due to the contribution of the EPWs produced in the LDI
cascade, up to the seventh secondary EPW. Because the
decay products are all probed with a unique TS geome-
try, the k spectra give an accurate measurement of their
relative intensity. These observations are of fundamental
importance in the context of SRS saturation because the
EPW and IAW evolutions determine the energy balance in
the SRS process.

Four beams of the Laboratoire pour l’Utilisation des
Lasers Intenses (LULI) facility (see Fig. 1b) were used to
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Direct observations of secondary Langmuir waves produced by the parametric decay instability of
primary Langmuir waves are presented. The measurements have been obtained using Thomson
scattering of a short-wavelength probe laser beam and are resolved in time, space, frequency, and
wave number. The primary Langmuir waves were driven by stimulated Raman scattering ~SRS! of
a smoothed laser beam in a preformed plasma. Measurements of the amplitude of the density
fluctuations associated with primary and secondary Langmuir waves show that the threshold of the
Langmuir decay instability ~LDI! is close to the threshold of the Raman instability. This is in
agreement with theoretical predictions. However, the ratio of amplitudes of the density fluctuations
associated with both secondary and primary Langmuir waves does not agree with existing theories
of SRS saturation due to LDI cascading and/or strong Langmuir turbulence in homogeneous
plasmas. An explanation based on the interaction beam intensity distribution produced by the
random phase plate in the plasma is discussed. © 1998 American Institute of Physics.
@S1070-664X~98!02101-6#

I. INTRODUCTION

Langmuir waves, or electron plasma waves ~EPW!, can
be easily excited in a plasma and are responsible for a variety
of nonlinear effects in many plasma applications, like inertial
confinement fusion, particle acceleration, current drive, and
microwave heating in tokamaks, x-ray lasers, and iono-
spheric plasma modification.1 EPWs are especially important
in laser plasmas as encountered in the context of inertial
confinement fusion by laser beams,2 as they can accelerate
electrons to high energy that preheats the fusion fuel and
reduces the target gain. They can also scatter large amounts
of incident laser light in undesired directions. Several mecha-
nisms have been identified that can generate EPWs in laser-
produced plasmas: stimulated Raman scattering ~SRS!, two-
plasmon decay, parametric decay instability, Langmuir
decay instability, resonance absorption, and hot electron
pulses.3 Because of weak dissipation of these EPWs due to
Landau or collisional damping, Langmuir waves interact be-
tween themselves, couple to ion acoustic waves, and often
bring plasma into a turbulent state.4–6 Previous laser–plasma
interaction experiments have focused on qualitative spectral
indications of the mechanisms of EPW generation, coupling,
and dissipation, while there was no direct measurement of
EPW decays. EPWs are difficult to diagnose as they do not
radiate directly light outside the plasma. Scattering of an

electromagnetic wave off EPWs is a common way to collect
and analyze light associated with EPWs. The most frequently
used diagnostic of parametric instabilities had been based on
the scattering of the incident laser light itself from the lon-
gitudinal waves resulting from the decay.7 However, infor-
mation on longitudinal waves can be distorted by the propa-
gation and nonlinear interaction of the electromagnetic wave
in a dense plasma. Thomson scattering of a short-wavelength
and low-intensity laser beam8 is a much more relevant
method to measure directly the spectrum of density fluctua-
tions in a plasma, and identify waves associated with specific
decays.

In this paper we describe results of an experiment that
was conducted to study features of the Langmuir decay in-
stability, including threshold, growth, and temporal evolution
of the plasma waves. The Langmuir decay instability ~LDI!
is the decay of a primary Langmuir wave into a secondary
Langmuir wave and an ion acoustic wave. First theoretical
predictions of this instability were reported by DuBois and
Goldman.6 Only indirect experimental indications of LDI
have been reported so far, based on the dependence of SRS
reflectivity on EPW damping or broadening of SRS
spectra.9,10 In the present experiment, SRS was used as the
source of EPWs, as the Langmuir wave spectrum driven by
SRS is simpler than the primary spectrum, driven by either
the ion acoustic decay instability or the two-plasmon decay.
In particular, EPWs driven by SRS are emitted only in the
forward direction of the laser propagation. Thus, any EPWs
traveling antiparallel to the laser wave vector must be due to
the LDI or another mechanism that can reverse the EPW’s
wave vector. LDI is of particular importance for SRS in the
context of laser-driven inertial confinement fusion, as it had
been proposed as one of the possible mechanisms respon-

a!Also at the Institute for Laser Science and Applications ~ILSA!, Lawrence
Livermore National Laboratory, P.O. Box 808, Livermore California
94550.

b!Present address: Department of Physics, University of Nevada, Reno, Ne-
vada 89557-0058.

c!Present address: P. N. Lebedev Physics Institute, Russian Academy of
Science, Moscow 117924, Russia.
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Direct observations of secondary Langmuir waves produced by the parametric decay instability of
primary Langmuir waves are presented. The measurements have been obtained using Thomson
scattering of a short-wavelength probe laser beam and are resolved in time, space, frequency, and
wave number. The primary Langmuir waves were driven by stimulated Raman scattering ~SRS! of
a smoothed laser beam in a preformed plasma. Measurements of the amplitude of the density
fluctuations associated with primary and secondary Langmuir waves show that the threshold of the
Langmuir decay instability ~LDI! is close to the threshold of the Raman instability. This is in
agreement with theoretical predictions. However, the ratio of amplitudes of the density fluctuations
associated with both secondary and primary Langmuir waves does not agree with existing theories
of SRS saturation due to LDI cascading and/or strong Langmuir turbulence in homogeneous
plasmas. An explanation based on the interaction beam intensity distribution produced by the
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I. INTRODUCTION

Langmuir waves, or electron plasma waves ~EPW!, can
be easily excited in a plasma and are responsible for a variety
of nonlinear effects in many plasma applications, like inertial
confinement fusion, particle acceleration, current drive, and
microwave heating in tokamaks, x-ray lasers, and iono-
spheric plasma modification.1 EPWs are especially important
in laser plasmas as encountered in the context of inertial
confinement fusion by laser beams,2 as they can accelerate
electrons to high energy that preheats the fusion fuel and
reduces the target gain. They can also scatter large amounts
of incident laser light in undesired directions. Several mecha-
nisms have been identified that can generate EPWs in laser-
produced plasmas: stimulated Raman scattering ~SRS!, two-
plasmon decay, parametric decay instability, Langmuir
decay instability, resonance absorption, and hot electron
pulses.3 Because of weak dissipation of these EPWs due to
Landau or collisional damping, Langmuir waves interact be-
tween themselves, couple to ion acoustic waves, and often
bring plasma into a turbulent state.4–6 Previous laser–plasma
interaction experiments have focused on qualitative spectral
indications of the mechanisms of EPW generation, coupling,
and dissipation, while there was no direct measurement of
EPW decays. EPWs are difficult to diagnose as they do not
radiate directly light outside the plasma. Scattering of an

electromagnetic wave off EPWs is a common way to collect
and analyze light associated with EPWs. The most frequently
used diagnostic of parametric instabilities had been based on
the scattering of the incident laser light itself from the lon-
gitudinal waves resulting from the decay.7 However, infor-
mation on longitudinal waves can be distorted by the propa-
gation and nonlinear interaction of the electromagnetic wave
in a dense plasma. Thomson scattering of a short-wavelength
and low-intensity laser beam8 is a much more relevant
method to measure directly the spectrum of density fluctua-
tions in a plasma, and identify waves associated with specific
decays.

In this paper we describe results of an experiment that
was conducted to study features of the Langmuir decay in-
stability, including threshold, growth, and temporal evolution
of the plasma waves. The Langmuir decay instability ~LDI!
is the decay of a primary Langmuir wave into a secondary
Langmuir wave and an ion acoustic wave. First theoretical
predictions of this instability were reported by DuBois and
Goldman.6 Only indirect experimental indications of LDI
have been reported so far, based on the dependence of SRS
reflectivity on EPW damping or broadening of SRS
spectra.9,10 In the present experiment, SRS was used as the
source of EPWs, as the Langmuir wave spectrum driven by
SRS is simpler than the primary spectrum, driven by either
the ion acoustic decay instability or the two-plasmon decay.
In particular, EPWs driven by SRS are emitted only in the
forward direction of the laser propagation. Thus, any EPWs
traveling antiparallel to the laser wave vector must be due to
the LDI or another mechanism that can reverse the EPW’s
wave vector. LDI is of particular importance for SRS in the
context of laser-driven inertial confinement fusion, as it had
been proposed as one of the possible mechanisms respon-

a!Also at the Institute for Laser Science and Applications ~ILSA!, Lawrence
Livermore National Laboratory, P.O. Box 808, Livermore California
94550.

b!Present address: Department of Physics, University of Nevada, Reno, Ne-
vada 89557-0058.

c!Present address: P. N. Lebedev Physics Institute, Russian Academy of
Science, Moscow 117924, Russia.

234 Phys. Plasmas 5 (1), January 1998 1070-664X/98/5(1)/234/9/$15.00 © 1998 American Institute of Physics

Time-resolved measurements of secondary Langmuir waves produced
by the Langmuir decay instability in a laser-produced plasma

C. Labaune, H. A. Baldis,a) and B. S. Bauerb)
Laboratoire pour l’Utilisation des Lasers Intenses, Ecole Polytechnique, Centre National de la Recherche
Scientifique, 91128 Palaiseau cedex, France

V. T. Tikhonchukc) and G. Laval
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From the collisionless k~kDe≫1/λei electron dispersion relation

2

INTRODUCTION

Ion acoustic turbulence (IAT) has been studied for its role in laser energy absorption, scattering instabilities,
nonlinear laser beam propagation and energy transport in inertial confinement fusion (ICF) plasmas. The basic
scenario that has been considered involves laser energy absorption into flux of electron kinetic energy. In order for
charge neutrality to be maintained, there must be a return current of the low velocity electrons from the bulk of
the distribution function in the opposite direction to the heat flux [1, 2]. This return current excites ion acoustic
waves (IAW) in plasmas where ZTe/Ti � 1, i.e. ion Landau damping is negligible and therefore the threshold for
the instability is low. The whole process is known as the return current instability (RCI) and has been researched
over the years in several works [1, 3–9]. Motivated by the renewed interest in the RCI as the mechanism responsible
for the enhanced laser light absorption and thermal transport modification in the ICF hohlraum targets [10] we will
discuss modelling of the RCI under conditions relevant to present ICF plasmas. An important characteristic of such
plasmas is the high electron temperature, Te, and long electron-ion (e-i) collision mean free path �ei = vTe/⌫ei,
where ⌫ei is the e-i collision frequency and vTe is the electron thermal velocity. Thus the key parameter of the RCI,
mainly �T = �ei/LT where LT = |rlnTe|�1, is often large enough, �T � 0.01, to imply also nonlocal regime of the
electron thermal transport [8]. This illustrates di�culty already in the linear stage of the RCI where the driving
force due to the heat flux of electrons is in the weak collision regime where transport closure requires nonlocal and
nonstationary constitutive relations between fluxes and gradients of hydrodynamical variables. Such the closure was
introduced in Ref. [11] and employed in the calculations of the RCI threshold and linear growth rate [8]. We will
update below these results taking advantage of subsequent developments in the nonlocal and nonstationary transport
theory, in particular exact dispersion and damping of linear IAWs in the entire regime of particle collisions [12]. We
have performed kinetic simulations of the RCI in the second part of the paper using Vlasov-Fokker-Planck (VFP)
code. Initial growth rate of the RCI follows closely predictions of the theoretical nonlocal model. The first saturation
of the RCI in one spatial dimension of the VFP simulations involves heating of ions in a tail of the ion distribution
function, enhanced electron collision frequency that produces anomalous resistivity and modifies thermal transport.
An important part of the IAT evolution is also convection of the IAT away from the region of the linear growth.
Further evolution of the IAT spectra as predicted by the weak turbulence theory [13, 14] involves multi dimensional
geometry and nonlinear induced scattering of IAWs. Using our 1D VFP numerical model we will examine the initial
growth of the RCI, evolution of IAT spectra and the saturation corresponding essentially to the physics of quasi-linear
theory. The two dimensional evolution of the IAT and the enhanced laser light absorption on ion acoustic fluctuations
are still absent from the VFP model and are not part of this report. VFP simulations describe evolution of the RCI
against the background of inhomogeneous plasma corresponding to the gold plasma corona, e.g. in the vicinity of
the hohlraum wall, and capture 1D physics of the IAT evolution expanding on the previous simulation results that
employed collisional particle-in-cell code [9].

LINEAR THEORY OF THE RCI

We will discuss linear theory of the RCI that builds on the results of the Ref. [8]. It includes the classical limit
(�T ⌧ 1) based on the Spitzer-Härm (SH) electron transport theory [15] and accounts for the nonlocal deviations from
this strong collision limit. We consider the electron distribution function (EDF) in the following form fe = f0 + µf1,
where µ is the cosine of the angle between the electron velocity ~v and the direction of temperature gradient, ~rTe.
The small perturbation f1(x, v) due to temperature gradient describes electron heat flux and the return current of
slow particles, that can drive IAW instability with the growth rate [1]
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where cos ✓ is calculated at the angle ✓ between IAW ~k vector and the direction of plasma inhomogeneity; ne and �De

are the electron background density and the Debye length, respectively. The RCI involves IAWs with k-vectors such
that k  kDe. This allows on spatial scale separation between plasma inhomogeneity described by the x-dependence
of f1(x, v) in Eq. (1) and IAW response characterized by the frequency ! and wave vector k. Electron linear Landau
damping coe�cient, �s, is expressed using electron, !pe, and ion, !pi, plasma frequencies, and cs = (ZTe/mi)1/2.
Only first angular harmonic of the EDF was used in the derivation of (1) because higher harmonic contributions to
the RCI growth rate are negligible [8]. Also, Eq. (1) was derived in the collisionless limit of the electron response to
the IAW perturbation at the k-number such that k�ei � 1. This is reasonable approximation for electrons, including
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electron threshold for the RCI, pT > 1, however ion response, particularly in the high Z plasmas such as Au, may
include e↵ects of collisions. Using results of Ref. [12] the IAW frequency, !, can be interpolated in the entire regime
of ion collisions,
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), g = ZTe/Ti. Ion-ion collisions become important for the ratio of �ii/�ei 'p
2/g2 ⌧ 1. For small temperature gradients as compared to �ei, i.e. for �T = �ei
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where ⇠� approximates electron-electron collision contributions. In a plasma with a finite ion temperature, Ti, damping
of IAWs, �i, includes contributions from ion-ion collisions, �H
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, and from the linear ion Landau damping, �L
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Linear ion Landau damping can be interpolated with accuracy of 6 8 % in the following form,
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The fitting function R(r, ki) describes smooth transition between collisional and collisionless ion damping rates and
is represented by R�1 = 1 + [rk2
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Note that above expression is valid only for the SH approximation for f1 that requires (�ei/Te)dTe/dx < 0.06/
p
Z.

Any increase of the temperature gradient above this limiting value will lead to nonlocality in the electron thermal
transport that corresponds to the reduction of the anisotropic part of the EDF and to the decrease in the RCI growth
rate [8].

Nonlocal e↵ects on the RCI growth rate

Nonlocal transport theory was used before in Ref. [8] to evaluate f1 in Eq. (1) in response to the temperature
gradient and large �T . This approach is fully equivalent to the solution of the VFP kinetic equation that is linearized
about global Maxwellian EDF and involves expansion of the perturbed distribution function into arbitrary number of
angular harmonics [11, 17]. As in some previous applications [9, 18–20] of this theory, an extension of its results to the
inhomogeneous background plasmas requires careful validation by comparing them, as in Sec. below, with numerical
solutions of the nonlinear VFP equation. Our implementation of the nonlocal e↵ects may be limited in its validity by
the large deviations of the isotropic EDF f0 from the Maxwellian form, e.g. due to inverse Bremsstrahlung heating
of the plasma [18]. In the remaining of this subsection we will generalize results of Ref. [8] that were obtained for
high-Z plasmas to the arbitrary ion charge. In the nonlocal case Eq. (3) can be written in the following form [8, 9]
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Note that above expression is valid only for the SH approximation for f1 that requires (�ei/Te)dTe/dx < 0.06/
p
Z.

Any increase of the temperature gradient above this limiting value will lead to nonlocality in the electron thermal
transport that corresponds to the reduction of the anisotropic part of the EDF and to the decrease in the RCI growth
rate [8].
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gradient and large �T . This approach is fully equivalent to the solution of the VFP kinetic equation that is linearized
about global Maxwellian EDF and involves expansion of the perturbed distribution function into arbitrary number of
angular harmonics [11, 17]. As in some previous applications [9, 18–20] of this theory, an extension of its results to the
inhomogeneous background plasmas requires careful validation by comparing them, as in Sec. below, with numerical
solutions of the nonlinear VFP equation. Our implementation of the nonlocal e↵ects may be limited in its validity by
the large deviations of the isotropic EDF f0 from the Maxwellian form, e.g. due to inverse Bremsstrahlung heating
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Note that above expression is valid only for the SH approximation for f1 that requires (�ei/Te)dTe/dx < 0.06/
p
Z.

Any increase of the temperature gradient above this limiting value will lead to nonlocality in the electron thermal
transport that corresponds to the reduction of the anisotropic part of the EDF and to the decrease in the RCI growth
rate [8].

Nonlocal e↵ects on the RCI growth rate

Nonlocal transport theory was used before in Ref. [8] to evaluate f1 in Eq. (1) in response to the temperature
gradient and large �T . This approach is fully equivalent to the solution of the VFP kinetic equation that is linearized
about global Maxwellian EDF and involves expansion of the perturbed distribution function into arbitrary number of
angular harmonics [11, 17]. As in some previous applications [9, 18–20] of this theory, an extension of its results to the
inhomogeneous background plasmas requires careful validation by comparing them, as in Sec. below, with numerical
solutions of the nonlinear VFP equation. Our implementation of the nonlocal e↵ects may be limited in its validity by
the large deviations of the isotropic EDF f0 from the Maxwellian form, e.g. due to inverse Bremsstrahlung heating
of the plasma [18]. In the remaining of this subsection we will generalize results of Ref. [8] that were obtained for
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Note that above expression is valid only for the SH approximation for f1 that requires (�ei/Te)dTe/dx < 0.06/
p
Z.

Any increase of the temperature gradient above this limiting value will lead to nonlocality in the electron thermal
transport that corresponds to the reduction of the anisotropic part of the EDF and to the decrease in the RCI growth
rate [8].

Nonlocal e↵ects on the RCI growth rate

Nonlocal transport theory was used before in Ref. [8] to evaluate f1 in Eq. (1) in response to the temperature
gradient and large �T . This approach is fully equivalent to the solution of the VFP kinetic equation that is linearized
about global Maxwellian EDF and involves expansion of the perturbed distribution function into arbitrary number of
angular harmonics [11, 17]. As in some previous applications [9, 18–20] of this theory, an extension of its results to the
inhomogeneous background plasmas requires careful validation by comparing them, as in Sec. below, with numerical
solutions of the nonlinear VFP equation. Our implementation of the nonlocal e↵ects may be limited in its validity by
the large deviations of the isotropic EDF f0 from the Maxwellian form, e.g. due to inverse Bremsstrahlung heating
of the plasma [18]. In the remaining of this subsection we will generalize results of Ref. [8] that were obtained for
high-Z plasmas to the arbitrary ion charge. In the nonlocal case Eq. (3) can be written in the following form [8, 9]
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• Influential monograph Plasma Turbulence by B.B. Kadomtsev was published in 1965
in English translation.  It addressed not only quasi-linear and weak-turbulence theory but also 
sophisticated results about strong turbulence. 
• Eq. (IV.18) from Kadomtsev’s book describes evolution of the ion acoustic turbulence 
in terms of the spectral intensity Ik according to weak turbulence theory: 

∂Ik
∂t −

1
k2

∂
∂k Ak7Ik2 =2γkIk−Ak4 Ik2 ,   giving stationary solution: Ik=

α
2Ak3 ln

k0
k

where the linear growth rate of the ion acoustic instability,  γk=αk.
• This result has been refined and generalized, cf. V.Yu. Bychenkov, et al. Physics Reports 
164, 119 (1988). Subsequently several attempts have been made to incorporate it into main 
stream laser plasma interaction theory.

Anomalous absorption of the 2ω 
probe: νan and N(k) from the weak
turbulence theory have reproduced
measurements of transmitted light
and electron temperature

Ion acoustic turbulence (IAT) contributes to anomalous collision
frequency that enhances absorption of laser light as 
compared to classical inverse bremsstrahlung (IB) mechanism.
No direct observation of IAT spectra has been made. 
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Bychenkov, Silin, Uryupin, Phys. Reports 164, 119 (1988)
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Practical expressions for anomalous absorption and transport using Kadomtsev spectrum of the IAT 
have implemented in the radiation hydro codes (cf. M. Sherlock et al. 2017)
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• Thomson scattering from the particle noise – form factor, 
1960, for stable, collisionless plasma not necessary in 
thermal equilibrium.
• Form factor with particle collisions from nonlocal and 
nonstationary hydrodynamics
• Enhanced fluctuation levels – thermal response to 
incoherent laser pulses
• Non-Maxwellian distribution functions – super Gaussians
in laser heated plasmas, modified by thermal transport.
• Electromagnetic, Weibel unstable plasmas – laboratory 
astrophysics, measurement of the magnetic fields
• Langmuir and ion acoustic turbulence – enhanced 
fluctuation spectra, absorption, modified transport



cf. Brantov et al. Phys. Plasmas 8, 3558 (2001)
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Note that above expression is valid only for the SH approximation for f1 that requires (�ei/Te)dTe/dx < 0.06/
p
Z.

Any increase of the temperature gradient above this limiting value will lead to nonlocality in the electron thermal
transport that corresponds to the reduction of the anisotropic part of the EDF and to the decrease in the RCI growth
rate [8].

Nonlocal e↵ects on the RCI growth rate

Nonlocal transport theory was used before in Ref. [8] to evaluate f1 in Eq. (1) in response to the temperature
gradient and large �T . This approach is fully equivalent to the solution of the VFP kinetic equation that is linearized
about global Maxwellian EDF and involves expansion of the perturbed distribution function into arbitrary number of
angular harmonics [11, 17]. As in some previous applications [9, 18–20] of this theory, an extension of its results to the
inhomogeneous background plasmas requires careful validation by comparing them, as in Sec. below, with numerical
solutions of the nonlinear VFP equation. Our implementation of the nonlocal e↵ects may be limited in its validity by
the large deviations of the isotropic EDF f0 from the Maxwellian form, e.g. due to inverse Bremsstrahlung heating
of the plasma [18]. In the remaining of this subsection we will generalize results of Ref. [8] that were obtained for
high-Z plasmas to the arbitrary ion charge. In the nonlocal case Eq. (3) can be written in the following form [8, 9]
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Z=1

Z=2 Z=30
Fit to the nonlocal kernel  Γ"(2):

4

FIG. 1. Nonlocal kernel �T as function of k�ei for Z = 1 (black point), Z = 2 (gray points) and Z = 30 (large points). The
solid lines corresponds to expressions (8).

where �T = �JR

T
/JT

T
is the nonlocal kernel [8], which is a function of ion charge Z and the collision parameter k�ei

(see Fig 1).
For an arbitrary ion charge calculations of JR

T
, JT

T
are described in Ref. [12, 17]. Using these results we have

proposed the following fit for �T , that corresponds to exact solution of the kinetic equation for small perturbations
with accuracy better than 15% for 1 < Z < 50 and 0 < k�ei < 100.
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By using the expression (8) one can estimates the nonlocal e↵ects on IAW growth rate for given temperature profile.
Below we present some examples of the growth rate calculations under conditions above instability threshold to
compare them with numerical solutions to the VFP equation.

NUMERICAL SOLUTION TO THE VFP EQUATION AND THE RCI EVOLUTION

The electron and ion distribution functions, fe(x,~v, t) and fi(x,~v, t), are described in one spatial and two velocity
dimensions by the kinetic equations,

@fe
@t

+ vxrfe �
e

me

~E · @fe
@~v

= Cei[fe, fi] + Cee[fe0, fe0], (9)

@fi
@t

+ vxrfi +
Ze

mi

~E · @fi
@~v

= 0 ,

where ~E is the self-consistently calculated electric field, including ambipolar field driving return current. The ion
distribution function is described by the collisionless Vlasov equation. The e↵ects of i-i collisions will manifest
themselves in Au plasmas by the additional damping of IAWs thus reducing the growth rate of RCI by 10% - 20%.
They could also influence evolution of the IAT on the long time scale. Only an isotropic part of the EDF, fe0, is
a↵ected by the e-e collisions in (9). To produce background plasma conditions for the solution of Eq. (9) that are
related to the ICF plasmas we have created and sustained temperature profile in the Au plasma. Figure 2 displays
temperature and density profiles that exist in the simulation box at 10 ps for this particular example. Temperature
is kept constant at 2200 eV in the region x � 30µm of the simulation box.

The density in Fig. 2 is normalized to the critical density of the 0.33 µm laser light. As the plasma evolves in the
VFP simulations the oppositely directed pressures from the region of higher density on the left and hot corona on he
right of the simulation box prevent rapid, on the scale of the RCI growth time, expansion of the plasma in our model
calculations. Only underdense part of the plasma density profile has been considered. Because at higher densities
and lower temperatures of the Au plasma high collision frequency keeps the RCI below the threshold (6). Given the

for 1<Z<50 and 0 < kλei < 100 within 
15% of the numerical solutions
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FIG. 1. Nonlocal kernel �T as function of k�ei for Z = 1 (black point), Z = 2 (gray points) and Z = 30 (large points). The
solid lines corresponds to expressions (8).

where �T = �JR

T
/JT

T
is the nonlocal kernel [8], which is a function of ion charge Z and the collision parameter k�ei

(see Fig 1).
For an arbitrary ion charge calculations of JR

T
, JT

T
are described in Ref. [12, 17]. Using these results we have

proposed the following fit for �T , that corresponds to exact solution of the kinetic equation for small perturbations
with accuracy better than 15% for 1 < Z < 50 and 0 < k�ei < 100.

�T (x) =
3

2
⇠�

✓
2

3 + 30⇠3
�
x
+

1

3 + ⇠�(4.5x0.35 + 0.18x)

◆
(8)

By using the expression (8) one can estimates the nonlocal e↵ects on IAW growth rate for given temperature profile.
Below we present some examples of the growth rate calculations under conditions above instability threshold to
compare them with numerical solutions to the VFP equation.

NUMERICAL SOLUTION TO THE VFP EQUATION AND THE RCI EVOLUTION

The electron and ion distribution functions, fe(x,~v, t) and fi(x,~v, t), are described in one spatial and two velocity
dimensions by the kinetic equations,

@fe
@t

+ vxrfe �
e

me

~E · @fe
@~v

= Cei[fe, fi] + Cee[fe0, fe0], (9)

@fi
@t

+ vxrfi +
Ze

mi

~E · @fi
@~v

= 0 ,

where ~E is the self-consistently calculated electric field, including ambipolar field driving return current. The ion
distribution function is described by the collisionless Vlasov equation. The e↵ects of i-i collisions will manifest
themselves in Au plasmas by the additional damping of IAWs thus reducing the growth rate of RCI by 10% - 20%.
They could also influence evolution of the IAT on the long time scale. Only an isotropic part of the EDF, fe0, is
a↵ected by the e-e collisions in (9). To produce background plasma conditions for the solution of Eq. (9) that are
related to the ICF plasmas we have created and sustained temperature profile in the Au plasma. Figure 2 displays
temperature and density profiles that exist in the simulation box at 10 ps for this particular example. Temperature
is kept constant at 2200 eV in the region x � 30µm of the simulation box.

The density in Fig. 2 is normalized to the critical density of the 0.33 µm laser light. As the plasma evolves in the
VFP simulations the oppositely directed pressures from the region of higher density on the left and hot corona on he
right of the simulation box prevent rapid, on the scale of the RCI growth time, expansion of the plasma in our model
calculations. Only underdense part of the plasma density profile has been considered. Because at higher densities
and lower temperatures of the Au plasma high collision frequency keeps the RCI below the threshold (6). Given the“Local” profiles in Au plasma (Z=50) at 10 ps from VFP 
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For the profiles in Au plasma,  growth rate 
calculations and comparison with VFP results

k=0.6 kD

SH – Spitzer-Harm solution for f1, using !"
VFP – growth rates from VFP simulations
NL1 – full nonlocal theory, using !"#$
NL2 – as NL1 but without i-i collisions 

NL2

NL1
NL1

NL2



For the profiles in Au (δT<0.035) the temporal evolution and spectra of IAT:

t [ps]

|E(k)|2

0.3<k/kDe<0.5

~ exp(2 γ t), γ=0.015  

Beginning of saturation due to 
heating of ions 

|E(k)|

time averaged

k/kDe


