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Outline

* Thomson scattering from the particle noise — form factor,
1960, for stable, collisionless plasma not necessary in

thermal equilibrium.

* Form factor with particle collisions from nonlocal and

nonstationary hydrodynamics

* Enhanced fluctuation levels — thermal response to
incoherent laser pulses

* Non-Maxwellian distribution functions — super Gaussians
in laser heated plasmas, modified by thermal transport.

* Electromagnetic, Weibel unstable plasmas — laboratory
astrophysics, measurement of the magnetic fields

* Langmuir and 10on acoustic turbulence — enhanced
fluctuation spectra, absorption, modified transport



Fluctuations due to particle
discretness



Fluctuations & Thomson scattering

Thomson scattering (TS) cross section is proportional to the dynamical form factor S (l_é, a)).
For stable plasmas (but not necessary in equilibrium) particle discretness gives rise to electron

(small amplitude) density fluctuations and their correlation function, as follows (J. Feyer, Can.
J. Phys. (1960); J. Renau, J. Geophys. Res. (1960); J. Daugherty, D. Farley, Proc. Roy. Soc.
Xe

(1960); E. Salpeter, Phys. Rev. (1960).
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FIG. 4. The Thomson scattering cross section is fit to the measured Thom- .
son scattering ion feature at 5.% ns to determine the ion temperature and Shown and arc ﬁtted Wlth the
kprObe plasma flow velocity. The best fit to the experimental data (red line) is calcu-

-
lated using an electron temperature and density determined from the electron S ( k’ a)) and M axwelll ans

feature (100 eV and 5.6 x 10'%¢cm™3), ion temperature of 40 eV, and a

plasma flow velocity of 8.65 x 107cm/s. (a) The ion temperature is

_ increased to 60 eV (green line) and decreased to 20 eV (blue line) to demon-

a)S - a)o + w strate the sensitivity of the fit. (b) The plasma flow velocity is varied from
8.9 x 107cm/s (green line) to 8.4 x 107cm/s (blue line) as well.



Effect of particle collisions
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It is difficult to properly include collisions into 00000

calculations of S(k,co) . In this paper we have 50000
used nonlocal and nonstationary transport theory o=

and Onsager hypothesis.

FIG. 1. Dynamical form factors for argon plasma at n, =
107 em™3, T =2eV, Z =1, A =18. The probe wavelength is
Ao = 10.6 um and the scattering angle 6 = 6°. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,w) of our theory Eq. (51) for 7, =T, = T.
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0 50 100 497 499 501 503 The rapid evolutions of the electron density and temperature in a laser-produced plasma were measured
Te (V) Wavelength (nm) using collective Thomson scattering. Unprecedented picosecond time resolution, enabled by a pulse-front-

tilt compensated spectrometer, revealed a transition in the plasma-wave dynamics from an initially cold,
collisional state to a quasistationary, collisionless state. The Thomson-scattering spectra were compared
with theoretical calculations of the fluctuation spectrum using either a conventional Bhatnagar-Gross-
Krook (BGK) collision operator or the rigorous Landau collision terms: the BGK model overestimates the

FIG. 5. (a) The width (FWHM) of the redshifted EPW features
is plotted for a density of 10! cm?® using the collisionless (red
diamonds), BGK (blue squares), and VFP (green triangles)
models as functions of electron temperature. (b) The spectrum 5 > o
calculated with the BGK model (blue dashed line) and the VEP electron temperature by 50% in the most-collisional conditions.

model (green dashed line) are shown for 7, =11 eV and

n, = 1.07 x 10'° ecm3. To illustrated the width differences, the 5
BGK spectrum was multiplied by 1.8.



Fluctuation Dissipation Theorem

In the strongly collisional regime, k)\aB<<1, (cf. e.g. Zhang, et al. Phys. Rev. Lett. 62, 1848

(1989)) classical transport relations (Braginskii, (1965)) are used to evaluate frequency

dependent electrical conductivity o, (k, w).
k2

Fluctuation-dissipation theorem: S(k,®) = Re[o,(k,w)], directly relates

2,2
Tw?e’n
o, (k, w) to the dynamical form factor. ¢

But plasma needs to be in thermodynamical equilibrium, T.=T=T.
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Onsager’s hypothesis

Fluctuations of dynamical quantities evolve in accordance with the same model equations

as those governing macroscopic processes. Thus, for example, fluctuations on

hydrodynamical scale relax due to collisions according to the equations of linearized

hydrodynamics. Or linearized kinetic equation provides description over full range of scales

and frequencies.

We used nonlocal, nonstationary hydrodynamics to evaluate correlation function of
electron density fluctuations (cf. W. Rozmus et al. Phys. Rev. E96, 043207 (2017)). Our
nonlocal hydro model is equivalent to the solution of linearized kinetic equation.
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Laser induced density
fluctuations



Incoherent lasers & enhanced fluctuations

Laser pulses of finite temporal and spatial bandwidth are used in ICF experiments and
employed as TS probes. The effect of the laser pulse incoherence on the TS cross-section
has been quantified and it leads to broadening of the scattering spectra. Such pulses can
have also direct effect of the level of ion acoustic fluctuations.

Density fluctuations 2 8n 95
driven by the ;
ponderomotive force: ot

Laser with hot spots and time smoothing — spectral density (Iz)w,k produces density
fluctuations such that the spectral density reads:
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Thermal response

For parameters of experiment: n,.=7 101° cm3, T,=850 eV, T;=190 eV, Z=15 collisions are
important: Agj=13 pm, A;; = 1.56 107?um, i.e. on the scale of speckle collisions will
change (enhance) the level of density fluctuations. Use nonlocal hydrodynamics. (Brantov
et al. Phys. Plasmas 6, 3002 (1999)).
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Approximately, for the parameters of the
experiment the coupling coefficient

Ay~ 7+0.88Z7(kN,,) Y7
0.1¢
can produce order of magnitude enhancement

above ponderomotive coupling level

0.01¢ Even for no frequency bandwidth TS may

. . . , , probe enhanced fluctuations by the laser
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Nonequilibrium distribution
functions



Heat flux and return current

Electron distribution function for the Spitzer-Harm transport model
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Thermal transport

Electron heat flux is poorly described by the classical diffusive model, qqg=—«xVTe, in
many laser produced plasmas. Thermal transport requires kinetic theory or nonlocal closure
when reduced to hydrodynamical description.

PHYSICAL REVIEW LETTERS 121, 125001 (2018)
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FIG. 1. (a) Calculated Thomson-scattering features (red curve,
right axis) from electron plasma waves [Eq. (1)] are shown
(vy = w/k) using a Maxwellian (solid blue curve, left axis)
electron distribution function and the non-Maxwellian (dashed
blue curve) distribution that accounts for classical SH heat flux
(Aei/Ly = 2.2 x 1073, g/qps = 3%). Inset: For a fixed normal-
ized phase velocity, the ratio (R) of the peak scattered power of
the up- and downshifted features are shown for calculations that
use classical SH (solid curve, top axis) and nonlocal (dashed
curve, bottom axis) distribution functions over a range of heat
flux. (b) A schematic of the setup is shown.
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* Asymmetry of resonances associated with electron
plasma waves propagating with and against the

heat flux in § (E, a)) is used to measure qrg by employing
results of Vlasov-Fokker-Planck simulations.

* SNB is G. Shurtz, Ph. Nicolai, M. Busquet,

Phys. Plasmas 7, 4238 (2000) — current standard

in nonlocal transport implementation into radiation
hydrodynamics. 13



TS from high-Z laser plasmas

VOLUME 82, NUMBER 1 PHYSICAL REVIEW LETTERS

4 JANUARY 1999

Thomson Scattering from High-Z Laser-Produced Plasmas
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We present the first simultaneous observations of ion acoustic and electron plasma waves in laser-
produced dense plasmas with Thomson scattering. In addition to measuring the standard plasma pa-
rameters, electron temperature and density, this novel experimental technique is shown to be a sensitive
method for temporally and spatially resolved measurements of the averaged ionization stage of the
plasma. Experiments with highly ionized gold plasmas clearly show that the inclusion of dielectronic
recombination in radiation-hydrodynamic modeling is critically important to model cooling plasmas.

[S0031-9007(98)08073-9]

« Simultaneous fits to ion acoustic and electron plasma

fluctuations are standard in TS experiments.

* Here ZT, is well approximated by the ion acoustic
peaks separation (ZT,>>T)).

» Inclusion of dielectronic recombination in radiation-
hydrodynamic modeling of Au plasma was croical

for the correct modeling of this plasma.
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Laser heated electron distribution functions

E. Fourkal, et al. Phys. Plasmas 8, 550 (2001)
S

2000
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FIG. 6. The electron plasma wave fluctuation spectra (in arbitrary units) as
a function of the scattered light wavelength in A. Experimental data (noisy
solid line) is taken from Ref. 6 and corresponds to the measurement at ¢
=2.25ns. A Maxwellian fit (T,=750 eV, n,=5.5x 10" cm™?) is given by
a dotted line. The dashed line shows a fit with the super-Gaussian EDF (11)
and the solid line corresponds to the spectrum calculated with a new non-
Maxwellian EDF (13) for the following plasma parameters m=4, n,=4.5
X 10" cem ™3, T,=950eV, Z=26.

* For the parameter @ = Zv§/vz, > 1,
e-¢ collisions are not frequent enough to
restore Maxwellian in the bulk of electrons.
* Collisional absorption of the laser light
(vy = eE /mw) results in super-Gaussian
distribution functions:

B " _ 3 \/E mI (5/m)>">
¢(x)_¢06 o 2 (3r(3/m))5/2

()

[30(3/m)\"? . 3
N TGmy | 0 Tt T 166057

X exp

b

J.-P. Matte, et al. , Plasma Phys. Contr. Fusion, 1988

* Electron-electron collisions between bulk electrons and fast electrons from the tail will
restore Maxwellian tails , albeit slowly. In inhomogeneous plasmas that are locally heated
by the laser heat carrying electrons will repopulate the tails of the electron distribution

function.

15



Laser heated electron distribution functions

Super Gaussian approximates isotropic part of the electron distribution function (EDF).
Such EDFs do not exist in laser produced plasmas because of localized heating and tails of
hot electrons, return current, non-isotropic pressure contributions, etc. cf. Brunner, Valeo,

Phys. Plasmas 9, 923 (2002); Batishchev ef al. Phys. Plasmas 9, 2302 (2002).
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TS from laser produced plasmas

VFP

Maxwellian \\
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TS from laser produced plasmas
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Plasma unstable with
respect to electromagnetic
iInstability



Magnetic field generation

Anna Grassi, Frederico Fiuza, SLAC, described by 2D particle-in-cell (PIC)
simulations Weibel instability of interpenetrating plasmas, magnetic field

generation and collisionless shock formation

PIC initialization profiles
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Magnetic field measurement by TS

C. Bruulsema, F. Fiuza, W.R., G. Swadling, S. Glenzer, propose local measurement of magnetic
field in Weibel unstable plasmas. TS spectra are used to calculate electric current, and B-field,
assuming that electron density fluctuations and S (l_c: w) are not affected by the electromagnetic
instability. The method is first validated by PIC simulations.
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Ablative plasma profiles

The same analysis is repeated for the density and flow velocity profiles of the expanding
plasmas, rather than periodic initially homogeneous flows.

Ion current in PIC simulations of the 0.0000 |
interpenetrating plasmas TS volume
—0.0025
(]
_—0.0050
2
S —0.0075
=
—-0.01001 —— (c/am)Ay B,
e —0.0125| * Ji(Fit)
e J(Fit)
— TS (PIC) —0.0150 , . , , ,
= TS (Fit) ) 75 10.0 125 150 | 175 20.0

Lwpi/c

2 . e Distributions functions are extracted from the TS
synthetic j ) : :
TS ’ volume in PIC simulations.
* Standard collisionless S (k, w) 1s calculated
using these distribution functions.
 Form factor is fitted with Maxwellians with several
free parameters including “occupation” number.
e This allows evaluation of currents and B-fields.
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Electrostatic turbulence



Unstable EPWs & TS

Nonlinear electron plasma waves driven by the stimulated Raman scattering undergo
further decays that contribute to saturation of the scattering instability.

Phys. Plasmas 5 (1), January 1998

Time-resolved measurements of secondary Langmuir waves produced
by the Langmuir decay instability in a laser-produced plasma

C. Labaune, H. A. Baldis,? and B. S. Bauer®
Laboratoire pour I'Utilisation des Lasers Intenses, Ecole Polytechnique, Centre National de la Recherche
Scientifique, 91128 Palaiseau cedex, France

V. T. Tikhonchuk® and G. Laval
Centre de Physique Théorique, Ecole Polytechnique, Centre National de la Recherche Scientifique,
91128 Palaiseau cedex, France
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TS from enhanced electrostatic fluctuations and
unstable plasmas

VOLUME 89, NUMBER 4 PHYSICAL REVIEW LETTERS 22 Jury 2002

Langmuir Decay Instability Cascade in Laser-Plasma Experiments

S. Depierreux,b* C. Labaune,' J. Fuchs,! D. Pesme,? V. T. Tikhonchuk,® and H. A. Baldis*
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TS spectrum of epw cascade reconstructed from
the experimental data using instrumental spectral

width for each component of the cascade.
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Return current instability (RCI)

Forslund, J. Geophys. Res. 75, 17 (1970)

From the collisionless (k~kp>>1/Aj) electron dispersion relation
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kvre 3 B Z 4+ 0.5 ﬁT
cos036,(2)0r, & = 20D

6 Kk

USing f1=f1SH : p*;:H =

In a high Z plasma (e.g. Au) i-i collisions are important for the IAW dispersion and

damplng, k~1/)\ii ) k@ _ k)\zza r — g/(1 + kZ)\ZDe)7 g = ZTe/TrL
o 5 5 R™' = 1+ [rk2(0.05r + 0.04)] !
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F31212 4 by /i 334 11724 12 v r+3.02  0.80rk? +1.49 |
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cf. Brantov et al. Phys. Rev. Lett. 108, 205001 (2012), and Bychenkov, et al. Phys. Plasmas 1, 2419 (1994).



lon-acoustic turbulence

* Influential monograph Plasma Turbulence by B.B. Kadomtsev was published in 1965

in English translation. It addressed not only quasi-linear and weak-turbulence theory but also
sophisticated results about strong turbulence.

* Eq. (IV.18) from Kadomtsev’s book describes evolution of the ion acoustic turbulence

in terms of the spectral intensity I, according to weak turbulence theory:

oy, 1 9 2 2 =0
ai{ ~ 120k (Ak7lk) =2yklk—Ak4 I, giving stationary solution: k= 2Ak3 g

where the linear growth rate of the ion acoustic instability, yj.=ak.

* This result has been refined and generalized, cf. V.Yu. Bychenkov, ef al. Physics Reports

164, 119 (1988). Subsequently several attempts have been made to incorporate it into main
stream laser plasma interaction theory.

VOLUME 88, NUMBER 23 PHYSICAL REVIEW LETTERS 10 Jung 2002
60
L IAT - Anomalous Absorption of High-Energy Green Laser Light in High-Z Plasmas
S 40} S.H. Glenzer,! W. Rozmus,>" V. Yu. Bychenkov,” J. D. Moody,! 1. Albritton,' R.L. Berger,' A Brantov,*
= M.E. Foord,' B.J. MacGowan,' R. K. Kir_kwood.' H. A. Baldis,? anq E. A. Williams'
£ 27 . Ion acoustic turbulence (IAT) contributes to anomalous collision
| frequency that enhances absorption of laser light as
o t1°13_ty (W‘O“;) compared to classical inverse bremsstrahlung (IB) mechanism.
ntensi cmr
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sities. The comparison with two models show that inverse

bremsstrahlung absorption (IB) is not sufficient to explain the 26
measurements (squares). Good agreement can be seen when in-

cluding ion acoustic turbulence (IAT).



Stationary spectrum of |IAT

Bychenkov, Silin, Uryupin, Phys. Reports 164, 119 (1988)
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Angular Dependence
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Classical & Anomalous Absorption
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AX IB - Coulomb collisions, v, Enhanced collisions, V,,
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Reduced model of IAT

Practical expressions for anomalous absorption and transport using Kadomtsev spectrum of the IAT
have implemented in the radiation hydro codes (cf. M. Sherlock et al. 2017)
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Summary

* Thomson scattering from the particle noise — form factor,
1960, for stable, collisionless plasma not necessary in

thermal equilibrium.

* Form factor with particle collisions from nonlocal and

nonstationary hydrodynamics

* Enhanced fluctuation levels — thermal response to
incoherent laser pulses

* Non-Maxwellian distribution functions — super Gaussians
in laser heated plasmas, modified by thermal transport.

* Electromagnetic, Weibel unstable plasmas — laboratory
astrophysics, measurement of the magnetic fields

* Langmuir and 10on acoustic turbulence — enhanced
fluctuation spectra, absorption, modified transport
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Nonlocal transport regime

cf. Brantov et al. Phys. Plasmas 8, 3558 (2001)

Naively, driving force of the RCI, according to SH theory, p; = p2f ~67, thus by

increasing 87 one should enhance the RCI growth rate. Except for §; > 0.06/1/Z
SH is no more valid — transport is nonlocal and in the weak collision regime.,

Use nonlocal transport theory and p; = p¥t:
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Vlasov-Fokker-Planck simulations

Kinetic simulations of the ICF plasma on the local scale
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VFP vs linear theory of RCI
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VFP simulations of RCI

For the profiles in Au (67<0.035) the temporal evolution and spectra of IAT:
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